Cargando…

MACHINE LEARNING SOLUTIONS ARCHITECT HANDBOOK create machine learning platforms to run... solutions in an enterprise setting.

Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data explo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: PING, DAVID
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1289987990
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 211224s2021 xx o 0|| 0 eng d
040 |a YDX  |b eng  |c YDX  |d EBLCP  |d ORMDA  |d OCLCO  |d OCLCF  |d N$T  |d OCLCQ  |d IEEEE 
019 |a 1289871228  |a 1289919942  |a 1289942332  |a 1292362719 
020 |a 9781801070416  |q (electronic bk.) 
020 |a 1801070415  |q (electronic bk.) 
020 |z 1801072167 
020 |z 9781801072168 
029 1 |a AU@  |b 000071519346 
035 |a (OCoLC)1289987990  |z (OCoLC)1289871228  |z (OCoLC)1289919942  |z (OCoLC)1289942332  |z (OCoLC)1292362719 
037 |a 9781801072168  |b O'Reilly Media 
037 |a 10163604  |b IEEE 
050 4 |a Q325.5  |b .P56 2021eb 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a PING, DAVID. 
245 1 0 |a MACHINE LEARNING SOLUTIONS ARCHITECT HANDBOOK  |h [electronic resource] :  |b create machine learning platforms to run... solutions in an enterprise setting. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2021. 
300 |a 1 online resource 
520 |a Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book Description With a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization, so there is a huge demand for skilled ML solutions architects in different industries. This hands-on ML book takes you through the design patterns, architectural considerations, and the latest technology that you need to know to become a successful ML solutions architect. You'll start by understanding ML fundamentals and how ML can be applied to real-world business problems. Once you've explored some of the leading ML algorithms for solving different types of problems, the book will help you get to grips with data management and using ML libraries such as TensorFlow and PyTorch. You'll learn how to use open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines and then advance to building an enterprise ML architecture using Amazon Web Services (AWS) services. You'll then cover security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. Finally, you'll get acquainted with AWS AI services and their applications in real-world use cases. By the end of this book, you'll be able to design and build an ML platform to support common use cases and architecture patterns. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. Basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts is assumed. 
505 0 |a Table of Contents Machine Learning and Machine Learning Solutions Architecture Business Use Cases for Machine Learning Machine Learning Algorithms Data Management for Machine Learning Open Source Machine Learning Libraries Kubernetes Container Orchestration Infrastructure Management Open Source Machine Learning Platforms Building a Data Science Environment Using AWS ML Services Building an Enterprise ML Architecture with AWS ML Services Advanced ML Engineering ML Governance, Bias, Explainability, and Privacy Building ML Solutions with AWS AI Services. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |z 1801072167  |z 9781801072168  |w (OCoLC)1264458798 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801072168/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302651695 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6845757 
938 |a EBSCOhost  |b EBSC  |n 3125157 
994 |a 92  |b IZTAP