Cargando…

Essential PySpark for Scalable Data Analytics /

Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key Features Discover how to convert huge amounts of raw data into meaningful and actionable insights Use Spark's unified analytics engine for end-to-end analytics, from...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nudurupati, Sreeram (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1286840341
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 211201s2021 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d AU@  |d Q3C  |d OCLCO  |d ORMDA  |d OCLCO  |d OCLCQ  |d TOH  |d OCLCQ  |d IEEEE  |d OCLCO 
019 |a 1285526146  |a 1288152310 
020 |a 9781800568877 
020 |a 1800568878 
020 |a 9781800563094  |q (electronic bk.) 
020 |a 1800563094  |q (electronic bk.) 
024 8 |a 9781800568877 
029 1 |a AU@  |b 000070164976 
035 |a (OCoLC)1286840341  |z (OCoLC)1285526146  |z (OCoLC)1288152310 
037 |a 9781800568877  |b O'Reilly Media 
037 |a 10162348  |b IEEE 
050 4 |a QA76.9.D343 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Nudurupati, Sreeram,  |e author. 
245 1 0 |a Essential PySpark for Scalable Data Analytics /  |c Nudurupati, Sreeram. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2021. 
300 |a 1 online resource (322 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 44.99 
520 |a Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key Features Discover how to convert huge amounts of raw data into meaningful and actionable insights Use Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analytics Perform data ingestion, cleansing, and integration for ML, data analytics, and data visualization Book Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learn Understand the role of distributed computing in the world of big data Gain an appreciation for Apache Spark as the de facto go-to for big data processing Scale out your data analytics process using Apache Spark Build data pipelines using data lakes, and perform data visualization with PySpark and Spark SQL Leverage the cloud to build truly scalable and real-time data analytics applications Explore the applications of data science and scalable machine learning with PySpark Integrate your clean and curated data with BI and SQL analysis tools Who this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts wh ... 
542 |f Copyright © 2021 Packt Publishing  |g 2021 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed October 29, 2021). 
505 0 |a Table of Contents Distributed Computing Primer Data Ingestion Data Cleansing and Integration Real-time Data Analytics Scalable Machine Learning with PySpark Feature Engineering – Extraction, Transformation, and Selection Supervised Machine Learning Unsupervised Machine Learning Machine Learning Life Cycle Management Scaling Out Single-Node Machine Learning Using PySpark Data Visualization with PySpark Spark SQL Primer Integrating External Tools with Spark SQL The Data Lakehouse. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800568877/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP