Cargando…

Data Engineering with Apache Spark, Delta Lake, and Lakehouse /

Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key Features Become well-versed with the core concepts of Apache Spark and Delta Lake for building data platforms Le...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kukreja, Manoj (Autor), Zburivsky, Danil (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1286829776
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 211201s2021 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d LUN  |d Q3C  |d OCLCO  |d ORMDA  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCO 
019 |a 1287808207  |a 1288152812 
020 |a 9781801077743 
020 |a 1801077746 
020 |a 9781801074322 
020 |a 1801074321 
024 8 |a 9781801077743 
035 |a (OCoLC)1286829776  |z (OCoLC)1287808207  |z (OCoLC)1288152812 
037 |a 9781801077743  |b O'Reilly Media 
037 |a 10163257  |b IEEE 
050 4 |a QA76.9.D343 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Kukreja, Manoj,  |e author. 
245 1 0 |a Data Engineering with Apache Spark, Delta Lake, and Lakehouse /  |c Kukreja, Manoj. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2021. 
300 |a 1 online resource (480 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 44.99 
520 |a Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key Features Become well-versed with the core concepts of Apache Spark and Delta Lake for building data platforms Learn how to ingest, process, and analyze data that can be later used for training machine learning models Understand how to operationalize data models in production using curated data Book Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learn Discover the challenges you may face in the data engineering world Add ACID transactions to Apache Spark using Delta Lake Understand effective design strategies to build enterprise-grade data lakes Explore architectural and design patterns for building efficient data ingestion pipelines Orchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIs Automate deployment and monitoring of data pipelines in production Get to grips with securing, monitoring, and managing data pipelines models efficiently Who this book is for This book is for aspiring data engineers and data analysts who a... 
542 |f Copyright © 2021 Packt Publishing  |g 2021 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed October 22, 2021). 
505 0 |a Table of Contents The Story of Data Engineering and Analytics Discovering Storage and Compute Data Lake Architectures Data Engineering on Microsoft Azure Understanding Data Pipelines Data Collection Stage - The Bronze Layer Understanding Delta Lake Data Curation Stage - The Silver Layer Data Aggregation Stage - The Gold Layer Deploying and Monitoring Pipelines in Production Solving Data Engineering Challenges Infrastructure Provisioning Continuous Integration and Deployment (CI/CD) of Data Pipelines. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Data mining. 
650 0 |a Microsoft Azure (Computing platform) 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Microsoft Azure (Plateforme informatique) 
650 7 |a Microsoft Azure (Computing platform)  |2 fast 
650 7 |a Data mining  |2 fast 
700 1 |a Zburivsky, Danil,  |e author. 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801077743/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP