Cargando…

Modern deep learning design and application development : versatile tools to solve deep learning problems /

Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learnin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ye, Andre (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York, NY] : Apress, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1286665297
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 211130s2022 nyua ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d YDX  |d STF  |d OCLCF  |d OCLCO  |d GW5XE  |d EBLCP  |d TOH  |d ORMDA  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 1286704876  |a 1286798572  |a 1287136805  |a 1290680010 
020 |a 148427413X  |q (electronic book) 
020 |a 9781484274132  |q (electronic bk.) 
020 |z 1484274121 
020 |z 9781484274125 
024 7 |a 10.1007/978-1-4842-7413-2  |2 doi 
029 1 |a AU@  |b 000070298802 
029 1 |a AU@  |b 000070307924 
035 |a (OCoLC)1286665297  |z (OCoLC)1286704876  |z (OCoLC)1286798572  |z (OCoLC)1287136805  |z (OCoLC)1290680010 
037 |a 9781484274132  |b O'Reilly Media 
050 4 |a Q325.73  |b .Y42 2022 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Ye, Andre,  |e author. 
245 1 0 |a Modern deep learning design and application development :  |b versatile tools to solve deep learning problems /  |c Andre Ye. 
264 1 |a [New York, NY] :  |b Apress,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from digital title page (viewed on December 30, 2021). 
505 0 |a Chapter 1: A Deep Dive Into Keras -- Chapter 2: Pre-training Strategies and Transfer Learning -- Chapter 3: The Versatility of Autoencoders -- Chapter 4: Model Compression for Practical Deployment -- Chapter 5: Automating Model Design with Meta-Optimization -- Chapter 6:Successful Neural Network Architecture Design -- Chapter 7:Reframing Difficult Deep Learning Problems. 
520 |a Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking. Youll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, youll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. Youll learn not only to understand and apply methods successfully but to think critically about it. Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to todays difficult problems. You will: Improve the performance of deep learning models by using pre-trained models, extracting rich features, and automating optimization. Compress deep learning models while maintaining performance. Reframe a wide variety of difficult problems and design effective deep learning solutions to solve them. Use the Keras framework, with some help from libraries like HyperOpt, TensorFlow, and PyTorch, to implement a wide variety of deep learning approaches. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning) 
650 6 |a Apprentissage profond. 
650 7 |a Deep learning (Machine learning)  |2 fast 
776 0 8 |i Print version:  |a Ye, Andre.  |t Modern deep learning design and application development.  |d [New York, NY] : Apress, 2022  |z 1484274121  |z 9781484274125  |w (OCoLC)1263864704 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484274132/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6810886 
938 |a YBP Library Services  |b YANK  |n 17742345 
938 |a EBSCOhost  |b EBSC  |n 3109620 
994 |a 92  |b IZTAP