|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
OR_on1283853143 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211106s2021 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d YDX
|d N$T
|d OCLCF
|d UKMGB
|d AU@
|d UKAHL
|d ORMDA
|d OCLCO
|d OCLCQ
|d IEEEE
|d OCLCO
|
015 |
|
|
|a GBC1H4950
|2 bnb
|
016 |
7 |
|
|a 020364689
|2 Uk
|
019 |
|
|
|a 1283141971
|a 1283822028
|a 1283948960
|a 1285525445
|
020 |
|
|
|a 1801816107
|
020 |
|
|
|a 9781801816106
|q (electronic bk.)
|
020 |
|
|
|z 1801819629
|
020 |
|
|
|z 9781801819626
|
024 |
8 |
|
|a 9781801819626
|
029 |
1 |
|
|a UKMGB
|b 020364689
|
029 |
1 |
|
|a AU@
|b 000070164744
|
029 |
1 |
|
|a AU@
|b 000070267127
|
035 |
|
|
|a (OCoLC)1283853143
|z (OCoLC)1283141971
|z (OCoLC)1283822028
|z (OCoLC)1283948960
|z (OCoLC)1285525445
|
037 |
|
|
|a 9781801816106
|b Packt Publishing
|
037 |
|
|
|a 9781801819626
|b O'Reilly Media
|
037 |
|
|
|a 10163197
|b IEEE
|
050 |
|
4 |
|a Q325.5
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Auffarth, Ben.
|
245 |
1 |
0 |
|a Machine Learning for Time-Series with Python
|h [electronic resource] :
|b Forecast, Predict, and Detect Anomalies with State-Of-the-art Machine Learning Methods.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing, Limited,
|c 2021.
|
300 |
|
|
|a 1 online resource (371 p.)
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
347 |
|
|
|a text file
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introduction to Time Series with Python -- What Is a Time Series? -- Characteristics of Time Series -- Time Series and Forecasting -- Past and Present -- Demography -- Genetics -- Astronomy -- Economics -- Meteorology -- Medicine -- Applied Statistics -- Python for Time Series -- Installing libraries -- Jupyter Notebook and JupyterLab -- NumPy -- pandas -- Best practice in Python -- Summary -- Chapter 2: Time-Series Analysis with Python -- What is time series analysis? -- Working with time series in Python
|
505 |
8 |
|
|a Requirements -- Datetime -- pandas -- Understanding the variables -- Uncovering relationships between variables -- Identifying trend and seasonality -- Summary -- Chapter 3: Preprocessing Time Series -- What Is Preprocessing? -- Feature Transforms -- Scaling -- Log and Power Transformations -- Imputation -- Feature Engineering -- Date- and Time-Related Features -- ROCKET -- Shapelets -- Python Practice -- Log and Power Transformations in Practice -- Imputation -- Holiday Features -- Date Annotation -- Paydays -- Seasons -- The Sun and Moon -- Business Days -- Automated Feature Extraction
|
505 |
8 |
|
|a ROCKET -- Shapelets in Practice -- Summary -- Chapter 4: Introduction to Machine Learning for Time-Series -- Machine learning with time series -- Supervised, unsupervised, and reinforcement learning -- History of machine learning -- Machine learning workflow -- Cross-validation -- Error metrics for time series -- Regression -- Classification -- Comparing time-series -- Machine learning algorithms for time-series -- Distance-based approaches -- Shapelets -- ROCKET -- Time Series Forest and Canonical Interval Forest -- Symbolic approaches -- HIVE-COTE -- Discussion -- Implementations -- Summary
|
505 |
8 |
|
|a Chapter 5: Time-Series Forecasting with Moving Averages and Autoregressive Models -- What are classical models? -- Moving average and autoregression -- Model selection and order -- Exponential smoothing -- ARCH and GARCH -- Vector autoregression -- Python libraries -- Statsmodels -- Python practice -- Requirements -- Modeling in Python -- Summary -- Chapter 6: Unsupervised Methods for Time-Series -- Unsupervised methods for time-series -- Anomaly detection -- Microsoft -- Google -- Amazon -- Facebook -- Twitter -- Implementations -- Change point detection -- Clustering -- Python practice
|
505 |
8 |
|
|a Requirements -- Anomaly detection -- Change point detection -- Summary -- Chapter 7: Machine Learning Models for Time-Series -- More machine learning methods for time series -- Validation -- K-nearest neighbors with dynamic time warping -- Silverkite -- Gradient boosting -- Python exercise -- Virtual environments -- K-nearest neighbors with dynamic time warping in Python -- Silverkite -- Gradient boosting -- Ensembles with Kats -- Summary -- Chapter 8: Online Learning for Time-Series -- Online learning for time series -- Online algorithms -- Drift -- Drift detection methods
|
500 |
|
|
|a Adaptive learning methods.
|
520 |
|
|
|a The book contains the most common as well as state-of-the-art methods in machine learning for time-series, and examples that every data scientist or analyst would have encountered, if not in their job, then in a job interview.
|
542 |
|
|
|f Copyright © 2021 Packt Publishing
|g 2021
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Time-series analysis
|x Data processing.
|
650 |
|
0 |
|a Time-series analysis
|x Computer programs.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Série chronologique
|x Informatique.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
650 |
|
7 |
|a Time-series analysis
|x Computer programs
|2 fast
|
650 |
|
7 |
|a Time-series analysis
|x Data processing
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Auffarth, Ben
|t Machine Learning for Time-Series with Python
|d Birmingham : Packt Publishing, Limited,c2021
|z 9781801819626
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781801819626/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH39343660
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6797223
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302556254
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3078141
|
994 |
|
|
|a 92
|b IZTAP
|