Cargando…

Machine Learning for Time-Series with Python Forecast, Predict, and Detect Anomalies with State-Of-the-art Machine Learning Methods.

The book contains the most common as well as state-of-the-art methods in machine learning for time-series, and examples that every data scientist or analyst would have encountered, if not in their job, then in a job interview.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Auffarth, Ben
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1283853143
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 211106s2021 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d N$T  |d OCLCF  |d UKMGB  |d AU@  |d UKAHL  |d ORMDA  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCO 
015 |a GBC1H4950  |2 bnb 
016 7 |a 020364689  |2 Uk 
019 |a 1283141971  |a 1283822028  |a 1283948960  |a 1285525445 
020 |a 1801816107 
020 |a 9781801816106  |q (electronic bk.) 
020 |z 1801819629 
020 |z 9781801819626 
024 8 |a 9781801819626 
029 1 |a UKMGB  |b 020364689 
029 1 |a AU@  |b 000070164744 
029 1 |a AU@  |b 000070267127 
035 |a (OCoLC)1283853143  |z (OCoLC)1283141971  |z (OCoLC)1283822028  |z (OCoLC)1283948960  |z (OCoLC)1285525445 
037 |a 9781801816106  |b Packt Publishing 
037 |a 9781801819626  |b O'Reilly Media 
037 |a 10163197  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Auffarth, Ben. 
245 1 0 |a Machine Learning for Time-Series with Python  |h [electronic resource] :  |b Forecast, Predict, and Detect Anomalies with State-Of-the-art Machine Learning Methods. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2021. 
300 |a 1 online resource (371 p.) 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
347 |a text file 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introduction to Time Series with Python -- What Is a Time Series? -- Characteristics of Time Series -- Time Series and Forecasting -- Past and Present -- Demography -- Genetics -- Astronomy -- Economics -- Meteorology -- Medicine -- Applied Statistics -- Python for Time Series -- Installing libraries -- Jupyter Notebook and JupyterLab -- NumPy -- pandas -- Best practice in Python -- Summary -- Chapter 2: Time-Series Analysis with Python -- What is time series analysis? -- Working with time series in Python 
505 8 |a Requirements -- Datetime -- pandas -- Understanding the variables -- Uncovering relationships between variables -- Identifying trend and seasonality -- Summary -- Chapter 3: Preprocessing Time Series -- What Is Preprocessing? -- Feature Transforms -- Scaling -- Log and Power Transformations -- Imputation -- Feature Engineering -- Date- and Time-Related Features -- ROCKET -- Shapelets -- Python Practice -- Log and Power Transformations in Practice -- Imputation -- Holiday Features -- Date Annotation -- Paydays -- Seasons -- The Sun and Moon -- Business Days -- Automated Feature Extraction 
505 8 |a ROCKET -- Shapelets in Practice -- Summary -- Chapter 4: Introduction to Machine Learning for Time-Series -- Machine learning with time series -- Supervised, unsupervised, and reinforcement learning -- History of machine learning -- Machine learning workflow -- Cross-validation -- Error metrics for time series -- Regression -- Classification -- Comparing time-series -- Machine learning algorithms for time-series -- Distance-based approaches -- Shapelets -- ROCKET -- Time Series Forest and Canonical Interval Forest -- Symbolic approaches -- HIVE-COTE -- Discussion -- Implementations -- Summary 
505 8 |a Chapter 5: Time-Series Forecasting with Moving Averages and Autoregressive Models -- What are classical models? -- Moving average and autoregression -- Model selection and order -- Exponential smoothing -- ARCH and GARCH -- Vector autoregression -- Python libraries -- Statsmodels -- Python practice -- Requirements -- Modeling in Python -- Summary -- Chapter 6: Unsupervised Methods for Time-Series -- Unsupervised methods for time-series -- Anomaly detection -- Microsoft -- Google -- Amazon -- Facebook -- Twitter -- Implementations -- Change point detection -- Clustering -- Python practice 
505 8 |a Requirements -- Anomaly detection -- Change point detection -- Summary -- Chapter 7: Machine Learning Models for Time-Series -- More machine learning methods for time series -- Validation -- K-nearest neighbors with dynamic time warping -- Silverkite -- Gradient boosting -- Python exercise -- Virtual environments -- K-nearest neighbors with dynamic time warping in Python -- Silverkite -- Gradient boosting -- Ensembles with Kats -- Summary -- Chapter 8: Online Learning for Time-Series -- Online learning for time series -- Online algorithms -- Drift -- Drift detection methods 
500 |a Adaptive learning methods. 
520 |a The book contains the most common as well as state-of-the-art methods in machine learning for time-series, and examples that every data scientist or analyst would have encountered, if not in their job, then in a job interview. 
542 |f Copyright © 2021 Packt Publishing  |g 2021 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Time-series analysis  |x Computer programs. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Computer programs  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
776 0 8 |i Print version:  |a Auffarth, Ben  |t Machine Learning for Time-Series with Python  |d Birmingham : Packt Publishing, Limited,c2021  |z 9781801819626 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801819626/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39343660 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6797223 
938 |a YBP Library Services  |b YANK  |n 302556254 
938 |a EBSCOhost  |b EBSC  |n 3078141 
994 |a 92  |b IZTAP