Cargando…

What Is Federated Learning? /

Until recently, an organization would have had to collect and store data in a central location to train a model with machine learning. Now, federated learning offers an alternative. With this report, you'll learn how to train ML models without sharing sensitive data in the process. Google softw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Glanz, Emily (Autor), Fallen, Nova (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2021.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1281679172
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 141021s2021 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d OCLCO  |d ORMDA  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO 
020 |a 9781098107253 
020 |a 109810725X 
024 8 |a 9781098107253 
029 1 |a AU@  |b 000070164975 
029 1 |a AU@  |b 000073556111 
035 |a (OCoLC)1281679172 
037 |a 9781098107253  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Glanz, Emily,  |e author. 
245 1 0 |a What Is Federated Learning? /  |c Glanz, Emily. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2021. 
300 |a 1 online resource (40 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 74.99 
520 |a Until recently, an organization would have had to collect and store data in a central location to train a model with machine learning. Now, federated learning offers an alternative. With this report, you'll learn how to train ML models without sharing sensitive data in the process. Google software engineers Emily Glanz and Nova Fallen introduce the motivation and technologies behind federated learning, providing the context you need to integrate it into your use cases. Whether you're a CTO, a software engineer, or a program or product manager, this report will help you understand how federated learning extends the power of AI to areas where data privacy is crucial. With federated learning, you can train an algorithm across multiple decentralized edge devices or servers that hold local data samples. You'll bring model training to the location where data was generated and lives. After reading this report, you will: Understand basic concepts and technologies in the federated learning field Draw inspiration from industrial use cases of federated learning Understand the privacy principles underlying federated learning and associated technologies Explore real-world case studies Learn about software available to train models with federated learning Learn the state of the art and future developments in the field of federated learning. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed October 25, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
700 1 |a Fallen, Nova,  |e author. 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098107253/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP