Cargando…

Math for Deep Learning /

Deep learning is everywhere, making this powerful driver of AI something more STEM professionals need to know. Learning which library commands to use is one thing, but to truly understand the discipline, you need to grasp the mathematical concepts that make it tick. This book will give you a working...

Descripción completa

Detalles Bibliográficos
Autor principal: Kneusel, Ronald (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: No Starch Press, 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1281677097
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 130921s2021 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d AU@  |d OCLCO  |d OCLCQ  |d TOH  |d OCLCQ 
019 |a 1277512120 
020 |a 9781098129101 
020 |a 1098129105 
020 |z 9781718501904 
024 8 |a 9781098129101 
029 1 |a AU@  |b 000070046371 
029 1 |a AU@  |b 000073550667 
035 |a (OCoLC)1281677097  |z (OCoLC)1277512120 
082 0 4 |a 006.310151  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Kneusel, Ronald,  |e author. 
245 1 0 |a Math for Deep Learning /  |c Kneusel, Ronald. 
250 |a 1st edition. 
264 1 |b No Starch Press,  |c 2021. 
300 |a 1 online resource (344 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 39.99 
520 |a Deep learning is everywhere, making this powerful driver of AI something more STEM professionals need to know. Learning which library commands to use is one thing, but to truly understand the discipline, you need to grasp the mathematical concepts that make it tick. This book will give you a working knowledge of topics in probability, statistics, linear algebra, and differential calculus - the essential math needed to make deep learning comprehensible, which is key to practicing it successfully. Each of the four subfields are contextualized with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. Chapters build upon one another, with foundational topics such as Bayes' theorem followed by more advanced concepts, like training neural networks using vectors, matrices, and derivatives of functions. You'll ultimately put all this math to use as you explore and implement deep learning algorithms, including backpropagation and gradient descent - the foundational algorithms that have enabled the AI revolution. You'll learn: " he rules of probability, probability distributions, and Bayesian probability " he use of statistics for understanding datasets and evaluating models " ow to manipulate vectors and matrices, and use both to move data through a neural network " ow to use linear algebra to implement principal component analysis and singular value decomposition " ow to apply improved versions of gradient descent, like RMSprop, Adagrad and Adadelta Once you understand the core math concepts presented throughout this book through the lens of AI programming, you'll have foundational know-how to easily follow and work with deep learning 
542 |f Copyright © No Starch Press 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed October 26, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098129101/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP