Cargando…

Beginning Apache Spark 3 : with DataFrame, Spark SQL, structured streaming, and Spark machine learning library /

Take a journey toward discovering, learning, and using Apache Spark 3.0. In this book, you will gain expertise on the powerful and efficient distributed data processing engine inside of Apache Spark; its user-friendly, comprehensive, and flexible programming model for processing data in batch and st...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Luu, Hien (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, 2021.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_on1280460608
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 211027s2021 nyu o 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d STF  |d Z5A  |d EBLCP  |d TOH  |d ORMDA  |d OCLCF  |d GW5XE  |d CZL  |d OCLCO  |d N$T  |d OCL  |d UKAHL  |d OCLCQ  |d OCLCO 
019 |a 1280603550  |a 1281140102  |a 1281974616  |a 1283844625  |a 1284805767  |a 1295599731  |a 1306588771 
020 |a 9781484273838  |q (electronic bk.) 
020 |a 1484273834  |q (electronic bk.) 
020 |z 1484273826 
020 |z 9781484273821 
024 7 |a 10.1007/978-1-4842-7383-8  |2 doi 
029 1 |a AU@  |b 000070128203 
029 1 |a AU@  |b 000070278384 
029 1 |a AU@  |b 000070164755 
035 |a (OCoLC)1280460608  |z (OCoLC)1280603550  |z (OCoLC)1281140102  |z (OCoLC)1281974616  |z (OCoLC)1283844625  |z (OCoLC)1284805767  |z (OCoLC)1295599731  |z (OCoLC)1306588771 
037 |a 9781484273838  |b O'Reilly Media 
050 4 |a QA76.9.D3 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Luu, Hien,  |e author. 
245 1 0 |a Beginning Apache Spark 3 :  |b with DataFrame, Spark SQL, structured streaming, and Spark machine learning library /  |c Hien Luu. 
250 |a Second edition. 
264 1 |a New York :  |b Apress,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewers -- Acknowledgments -- Introduction -- Chapter 1: Introduction to Apache Spark -- Overview -- History -- Spark Core Concepts and Architecture -- Spark Cluster and Resource Management System -- Spark Applications -- Spark Drivers and Executors -- Spark Unified Stack -- Spark Core -- Spark SQL -- Spark Structured Streaming -- Spark MLlib -- Spark GraphX -- SparkR -- Apache Spark 3.0 -- Adaptive Query Execution Framework -- Dynamic Partition Pruning (DPP) -- Accelerator-aware Scheduler -- Apache Spark Applications 
505 8 |a Spark Example Applications -- Apache Spark Ecosystem -- Delta Lake -- Koalas -- MLflow -- Summary -- Chapter 2: Working with Apache Spark -- Downloading and Installation -- Downloading Spark -- Installing Spark -- Spark Scala Shell -- Spark Python Shell -- Having Fun with the Spark Scala Shell -- Useful Spark Scala Shell Command and Tips -- Basic Interactions with Scala and Spark -- Basic Interactions with Scala -- Spark UI and Basic Interactions with Spark -- Spark UI -- Basic Interactions with Spark -- Introduction to Collaborative Notebooks -- Create a Cluster -- Create a Folder 
505 8 |a Create a Notebook -- Setting up Spark Source Code -- Summary -- Chapter 3: Spark SQL: Foundation -- Understanding RDD -- Introduction to the DataFrame API -- Creating a DataFrame -- Creating a DataFrame from RDD -- Creating a DataFrame from a Range of Numbers -- Creating a DataFrame from Data Sources -- Creating a DataFrame by Reading Text Files -- Creating a DataFrame by Reading CSV Files -- Creating a DataFrame by Reading JSON Files -- Creating a DataFrame by Reading Parquet Files -- Creating a DataFrame by Reading ORC Files -- Creating a DataFrame from JDBC 
505 8 |a Working with Structured Operations -- Working with Columns -- Working with Structured Transformations -- select(columns) -- selectExpr(expressions) -- filler(condition), where(condition) -- distinct, dropDuplicates -- sort(columns), orderBy(columns) -- limit(n) -- union(otherDataFrame) -- withColumn(colName, column) -- withColumnRenamed(existingColName, newColName) -- drop(columnName1, columnName2) -- sample(fraction), sample(fraction, seed), sample(fraction, seed, withReplacement) -- randomSplit(weights) -- Working with Missing or Bad Data -- Working with Structured Actions 
505 8 |a Describe(columnNames) -- Introduction to Datasets -- Creating Datasets -- Working with Datasets -- Using SQL in Spark SQL -- Running SQL in Spark -- Writing Data Out to Storage Systems -- The Trio: DataFrame, Dataset, and SQL -- DataFrame Persistence -- Summary -- Chapter 4: Spark SQL: Advanced -- Aggregations -- Aggregation Functions -- Common Aggregation Functions -- count(col) -- countDistinct(col) -- min(col), max(col) -- sum(col) -- sumDistinct(col) -- avg(col) -- skewness(col), kurtosis(col) -- variance(col), stddev(col) -- Aggregation with Grouping -- Multiple Aggregations per Group 
500 |a Includes index. 
520 |a Take a journey toward discovering, learning, and using Apache Spark 3.0. In this book, you will gain expertise on the powerful and efficient distributed data processing engine inside of Apache Spark; its user-friendly, comprehensive, and flexible programming model for processing data in batch and streaming; and the scalable machine learning algorithms and practical utilities to build machine learning applications. Beginning Apache Spark 3 begins by explaining different ways of interacting with Apache Spark, such as Spark Concepts and Architecture, and Spark Unified Stack. Next, it offers an overview of Spark SQL before moving on to its advanced features. It covers tips and techniques for dealing with performance issues, followed by an overview of the structured streaming processing engine. It concludes with a demonstration of how to develop machine learning applications using Spark MLlib and how to manage the machine learning development lifecycle. This book is packed with practical examples and code snippets to help you master concepts and features immediately after they are covered in each section. After reading this book, you will have the knowledge required to build your own big data pipelines, applications, and machine learning applications. What You Will Learn Master the Spark unified data analytics engine and its various components Work in tandem to provide a scalable, fault tolerant and performant data processing engine Leverage the user-friendly and flexible programming model to perform simple to complex data analytics using dataframe and Spark SQL Develop machine learning applications using Spark MLlib Manage the machine learning development lifecycle using MLflow Who This Book Is For Data scientists, data engineers and software developers. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Big data. 
650 0 |a Distributed databases. 
650 0 |a Open source software. 
650 0 |a Machine learning. 
650 6 |a Données volumineuses. 
650 6 |a Bases de données réparties. 
650 6 |a Logiciels libres. 
650 6 |a Apprentissage automatique. 
650 7 |a Distributed databases  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Open source software  |2 fast 
776 0 8 |c Original  |z 1484273826  |z 9781484273821  |w (OCoLC)1262191908 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484273838/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39383208 
938 |a YBP Library Services  |b YANK  |n 302530766 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6789928 
938 |a EBSCOhost  |b EBSC  |n 3072175 
994 |a 92  |b IZTAP