Cargando…

Is Building Secure ML Possible? /

Security isn't considered a high priority when it comes to machine learning systems. But given the speed of innovation in this area, the rapid advances in ML present a whole new set of security risks that are quite different from those of traditional software. This report reviews known security...

Descripción completa

Detalles Bibliográficos
Autor principal: Nelson, Catherine (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1277509935
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 211020s2021 xx o 000 0 eng d
040 |a AU@  |b eng  |c AU@  |d OCLCQ  |d TOH  |d OCLCQ 
020 |z 9781098107321 
024 8 |a 9781098107338 
029 0 |a AU@  |b 000070045970 
029 1 |a AU@  |b 000073554257 
035 |a (OCoLC)1277509935 
049 |a UAMI 
100 1 |a Nelson, Catherine,  |e author. 
245 1 0 |a Is Building Secure ML Possible? /  |c Nelson, Catherine. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2021. 
300 |a 1 online resource (24 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Security isn't considered a high priority when it comes to machine learning systems. But given the speed of innovation in this area, the rapid advances in ML present a whole new set of security risks that are quite different from those of traditional software. This report reviews known security risks for ML systems and examines why security in this area is particularly important today. Catherine Nelson, principal data scientist at SAP Concur, describes techniques to enhance security, increase privacy, and mitigate attacks that do occur on ML systems. By defining what's meant by secure, she examines whether the techniques now available are sufficient to achieve true security in ML systems. This report is ideal for ML engineers, data scientists, and managers of ML teams. Learn key points in the machine learning lifecycle when security becomes particularly important Get an overview of known security risks, including transfer learning, model theft, model inversion, and membership inference attacks Mitigate security risks using audits and governance, model monitoring, data checks and balances, and general security practice. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed October 25, 2021) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098107338/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP