Cargando…

Random Evolutionary Systems Asymptotic Properties and Large Deviations /

Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In R...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Koroliouk, Dmitri (Autor), Samoilenko, Igor (Autor)
Formato: eBook
Idioma:Inglés
Publicado: London : Wiley-ISTE, 2021.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_on1277067426
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 210717s2021 enk go 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |c UKAHL  |d ORMDA  |d OCLCF  |d LANGC  |d OCLCQ 
020 |a 9781119851240  |q (e-book) 
020 |a 1119851246 
020 |z 9781786307521 
035 |a (OCoLC)1277067426 
037 |a 9781786307521  |b O'Reilly Media 
050 4 |a QA276 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Koroliouk, Dmitri,  |e author. 
245 1 0 |a Random Evolutionary Systems  |b Asymptotic Properties and Large Deviations /  |c Dmitri Koroliouk, Igor Samoilenko. 
250 |a 1st edition. 
264 1 |a London :  |b Wiley-ISTE,  |c 2021. 
300 |a 1 online resource 
520 |a Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Mathematical statistics  |x Asymptotic theory. 
650 0 |a Science  |x Mathematical models. 
650 7 |a Mathematical statistics  |x Asymptotic theory.  |2 fast  |0 (OCoLC)fst01012128 
650 7 |a Science  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01108309 
700 1 |a Samoilenko, Igor,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786307521/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39076947 
994 |a 92  |b IZTAP