Cargando…

Machine Learning Engineering with Python : Manage the Production Life Cycle of Machine Learning Models Using MLOps with Practical Examples.

Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build y...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McMahon, Andrew P.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1273976383
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 211009s2021 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UKMGB  |d OCLCF  |d OCLCO  |d ORMDA  |d N$T  |d KSU  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCO 
015 |a GBC1G8227  |2 bnb 
016 7 |a 020351863  |2 Uk 
019 |a 1276857946 
020 |a 180107710X 
020 |a 9781801077101  |q (electronic bk.) 
020 |z 9781801079259  |q (pbk.) 
029 1 |a AU@  |b 000070267123 
029 1 |a AU@  |b 000070307887 
029 1 |a UKMGB  |b 020351863 
035 |a (OCoLC)1273976383  |z (OCoLC)1276857946 
037 |a 9781801077101  |b Packt Publishing Pvt. Ltd 
037 |a 9781801079259  |b O'Reilly Media 
037 |a 10163645  |b IEEE 
050 4 |a QA76.73.P98 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a McMahon, Andrew P. 
245 1 0 |a Machine Learning Engineering with Python :  |b Manage the Production Life Cycle of Machine Learning Models Using MLOps with Practical Examples. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2021. 
300 |a 1 online resource (277 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering. What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary. 
505 0 |a Table of Contents Introduction to ML Engineering The Machine Learning Development Process From Model to Model Factory Packaging Up Deployment Patterns and Tools Scaling Up Building an Example ML Microservice Building an Extract Transform Machine Learning Use Case. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a McMahon, Andrew P.  |t Machine Learning Engineering with Python.  |d Birmingham : Packt Publishing, Limited, ©2021 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801079259/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6741267 
938 |a EBSCOhost  |b EBSC  |n 3046740 
994 |a 92  |b IZTAP