Practical data science with Python : learn tools and techniques from hands-on examples to extract insights from data /
The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham :
Packt Publishing,
2021.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover
- CopyRight
- Contributors
- Table of Contents
- Preface
- An Introduction and the Basics
- Chapter 1: Introduction to Data Science
- The data science origin story
- The top data science tools and skills
- Python
- Other programming languages
- GUIs and platforms
- Cloud tools
- Statistical methods and math
- Collecting, organizing, and preparing data
- Software development
- Business understanding and communication
- Specializations in and around data science
- Machine learning
- Business intelligence
- Deep learning
- Data engineering
- Big data
- Statistical methods
- Natural Language Processing (NLP)
- Artificial Intelligence (AI)
- Choosing how to specialize
- Data science project methodologies
- Using data science in other fields
- CRISP-DM
- TDSP
- Further reading on data science project management strategies
- Other tools
- Test your knowledge
- Summary
- Chapter 2: Getting Started with Python
- Installing Python with Anaconda and getting started
- Installing Anaconda
- Running Python code
- The Python shell
- The IPython Shell
- Jupyter
- Why the command line?
- Command line basics
- Installing and using a code text editor
- VS Code
- Editing Python code with VS Code
- Running a Python file
- Installing Python packages and creating virtual environments
- Python basics
- Numbers
- Strings
- Variables
- Lists, tuples, sets, and dictionaries
- Lists
- Tuples
- Sets
- Dictionaries
- Loops and comprehensions
- Booleans and conditionals
- Packages and modules
- Functions
- Classes
- Multithreading and multiprocessing
- Software engineering best practices
- Debugging errors and utilizing documentation
- Debugging
- Documentation
- Version control with Git
- Code style
- Productivity tips
- Test your knowledge
- Summary
- Dealing with Data
- Chapter 3: SQL and Built-in File Handling Modules in Python
- Introduction
- Loading, reading, and writing files with base Python
- Opening a file and reading its contents
- Using the built-in JSON module
- Saving credentials or data in a Python file
- Saving Python objects with pickle
- Using SQLite and SQL
- Creating a SQLite database and storing data
- Using the SQLAlchemy package in Python
- Test your knowledge
- Summary
- Chapter 4: Loading and Wrangling Data with Pandas and NumPy
- Data wrangling and analyzing iTunes data
- Loading and saving data with Pandas
- Understanding the DataFrame structure and combining/concatenating multiple DataFrames
- Exploratory Data Analysis (EDA) and basic data cleaning with Pandas
- Examining the top and bottom of the data
- Examining the data's dimensions, datatypes, and missing values
- Investigating statistical properties of the data
- Plotting with DataFrames
- Cleaning data
- Filtering DataFrames
- Removing irrelevant data
- Dealing with missing values
- Dealing with outliers
- Dealing with duplicate values