Cargando…

Practical data science with Python : learn tools and techniques from hands-on examples to extract insights from data /

The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: George, Nathan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1273669617
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 211007s2021 enk o 0|| 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d EBLCP  |d N$T  |d UKMGB  |d OCLCF  |d OCLCO  |d YT1  |d OCLCO  |d YDX  |d OCLCQ  |d IEEEE 
015 |a GBC1D3638  |2 bnb 
016 7 |a 020291972  |2 Uk 
019 |a 1273916271  |a 1273978522  |a 1276857813  |a 1395615706 
020 |a 9781801076654  |q electronic book 
020 |a 1801076650  |q electronic book 
020 |z 1801071977 
020 |z 9781801071970 
029 1 |a AU@  |b 000070045914 
029 1 |a UKMGB  |b 020291972 
029 1 |a AU@  |b 000070049467 
035 |a (OCoLC)1273669617  |z (OCoLC)1273916271  |z (OCoLC)1273978522  |z (OCoLC)1276857813  |z (OCoLC)1395615706 
037 |a 9781801076654  |b Packt Publishing 
037 |a 10162806  |b IEEE 
050 4 |a QA76.9.D3  |b G46 2021 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a George, Nathan,  |e author. 
245 1 0 |a Practical data science with Python :  |b learn tools and techniques from hands-on examples to extract insights from data /  |c Nathan George. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- CopyRight -- Contributors -- Table of Contents -- Preface -- An Introduction and the Basics -- Chapter 1: Introduction to Data Science -- The data science origin story -- The top data science tools and skills -- Python -- Other programming languages -- GUIs and platforms -- Cloud tools -- Statistical methods and math -- Collecting, organizing, and preparing data -- Software development -- Business understanding and communication -- Specializations in and around data science -- Machine learning -- Business intelligence -- Deep learning -- Data engineering -- Big data 
505 8 |a Statistical methods -- Natural Language Processing (NLP) -- Artificial Intelligence (AI) -- Choosing how to specialize -- Data science project methodologies -- Using data science in other fields -- CRISP-DM -- TDSP -- Further reading on data science project management strategies -- Other tools -- Test your knowledge -- Summary -- Chapter 2: Getting Started with Python -- Installing Python with Anaconda and getting started -- Installing Anaconda -- Running Python code -- The Python shell -- The IPython Shell -- Jupyter -- Why the command line? -- Command line basics 
505 8 |a Installing and using a code text editor -- VS Code -- Editing Python code with VS Code -- Running a Python file -- Installing Python packages and creating virtual environments -- Python basics -- Numbers -- Strings -- Variables -- Lists, tuples, sets, and dictionaries -- Lists -- Tuples -- Sets -- Dictionaries -- Loops and comprehensions -- Booleans and conditionals -- Packages and modules -- Functions -- Classes -- Multithreading and multiprocessing -- Software engineering best practices -- Debugging errors and utilizing documentation -- Debugging -- Documentation -- Version control with Git 
505 8 |a Code style -- Productivity tips -- Test your knowledge -- Summary -- Dealing with Data -- Chapter 3: SQL and Built-in File Handling Modules in Python -- Introduction -- Loading, reading, and writing files with base Python -- Opening a file and reading its contents -- Using the built-in JSON module -- Saving credentials or data in a Python file -- Saving Python objects with pickle -- Using SQLite and SQL -- Creating a SQLite database and storing data -- Using the SQLAlchemy package in Python -- Test your knowledge -- Summary -- Chapter 4: Loading and Wrangling Data with Pandas and NumPy 
505 8 |a Data wrangling and analyzing iTunes data -- Loading and saving data with Pandas -- Understanding the DataFrame structure and combining/concatenating multiple DataFrames -- Exploratory Data Analysis (EDA) and basic data cleaning with Pandas -- Examining the top and bottom of the data -- Examining the data's dimensions, datatypes, and missing values -- Investigating statistical properties of the data -- Plotting with DataFrames -- Cleaning data -- Filtering DataFrames -- Removing irrelevant data -- Dealing with missing values -- Dealing with outliers -- Dealing with duplicate values 
520 |a The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Database management. 
650 0 |a Big data. 
650 0 |a Python (Computer program language) 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Données volumineuses. 
650 6 |a Python (Langage de programmation) 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |z 9781801076654 
776 0 8 |i Print version:  |z 1801071977  |z 9781801071970  |w (OCoLC)1259508796 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801071970/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302499660 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6739165 
938 |a EBSCOhost  |b EBSC  |n 3050266 
994 |a 92  |b IZTAP