|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
OR_on1273669617 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211007s2021 enk o 0|| 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d EBLCP
|d N$T
|d UKMGB
|d OCLCF
|d OCLCO
|d YT1
|d OCLCO
|d YDX
|d OCLCQ
|d IEEEE
|
015 |
|
|
|a GBC1D3638
|2 bnb
|
016 |
7 |
|
|a 020291972
|2 Uk
|
019 |
|
|
|a 1273916271
|a 1273978522
|a 1276857813
|a 1395615706
|
020 |
|
|
|a 9781801076654
|q electronic book
|
020 |
|
|
|a 1801076650
|q electronic book
|
020 |
|
|
|z 1801071977
|
020 |
|
|
|z 9781801071970
|
029 |
1 |
|
|a AU@
|b 000070045914
|
029 |
1 |
|
|a UKMGB
|b 020291972
|
029 |
1 |
|
|a AU@
|b 000070049467
|
035 |
|
|
|a (OCoLC)1273669617
|z (OCoLC)1273916271
|z (OCoLC)1273978522
|z (OCoLC)1276857813
|z (OCoLC)1395615706
|
037 |
|
|
|a 9781801076654
|b Packt Publishing
|
037 |
|
|
|a 10162806
|b IEEE
|
050 |
|
4 |
|a QA76.9.D3
|b G46 2021
|
082 |
0 |
4 |
|a 005.7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a George, Nathan,
|e author.
|
245 |
1 |
0 |
|a Practical data science with Python :
|b learn tools and techniques from hands-on examples to extract insights from data /
|c Nathan George.
|
264 |
|
1 |
|a Birmingham :
|b Packt Publishing,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover -- CopyRight -- Contributors -- Table of Contents -- Preface -- An Introduction and the Basics -- Chapter 1: Introduction to Data Science -- The data science origin story -- The top data science tools and skills -- Python -- Other programming languages -- GUIs and platforms -- Cloud tools -- Statistical methods and math -- Collecting, organizing, and preparing data -- Software development -- Business understanding and communication -- Specializations in and around data science -- Machine learning -- Business intelligence -- Deep learning -- Data engineering -- Big data
|
505 |
8 |
|
|a Statistical methods -- Natural Language Processing (NLP) -- Artificial Intelligence (AI) -- Choosing how to specialize -- Data science project methodologies -- Using data science in other fields -- CRISP-DM -- TDSP -- Further reading on data science project management strategies -- Other tools -- Test your knowledge -- Summary -- Chapter 2: Getting Started with Python -- Installing Python with Anaconda and getting started -- Installing Anaconda -- Running Python code -- The Python shell -- The IPython Shell -- Jupyter -- Why the command line? -- Command line basics
|
505 |
8 |
|
|a Installing and using a code text editor -- VS Code -- Editing Python code with VS Code -- Running a Python file -- Installing Python packages and creating virtual environments -- Python basics -- Numbers -- Strings -- Variables -- Lists, tuples, sets, and dictionaries -- Lists -- Tuples -- Sets -- Dictionaries -- Loops and comprehensions -- Booleans and conditionals -- Packages and modules -- Functions -- Classes -- Multithreading and multiprocessing -- Software engineering best practices -- Debugging errors and utilizing documentation -- Debugging -- Documentation -- Version control with Git
|
505 |
8 |
|
|a Code style -- Productivity tips -- Test your knowledge -- Summary -- Dealing with Data -- Chapter 3: SQL and Built-in File Handling Modules in Python -- Introduction -- Loading, reading, and writing files with base Python -- Opening a file and reading its contents -- Using the built-in JSON module -- Saving credentials or data in a Python file -- Saving Python objects with pickle -- Using SQLite and SQL -- Creating a SQLite database and storing data -- Using the SQLAlchemy package in Python -- Test your knowledge -- Summary -- Chapter 4: Loading and Wrangling Data with Pandas and NumPy
|
505 |
8 |
|
|a Data wrangling and analyzing iTunes data -- Loading and saving data with Pandas -- Understanding the DataFrame structure and combining/concatenating multiple DataFrames -- Exploratory Data Analysis (EDA) and basic data cleaning with Pandas -- Examining the top and bottom of the data -- Examining the data's dimensions, datatypes, and missing values -- Investigating statistical properties of the data -- Plotting with DataFrames -- Cleaning data -- Filtering DataFrames -- Removing irrelevant data -- Dealing with missing values -- Dealing with outliers -- Dealing with duplicate values
|
520 |
|
|
|a The book provides a one-stop solution for getting into data science with Python and teaches how to extract insights from data.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Bases de données
|x Gestion.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Database management.
|2 fast
|0 (OCoLC)fst00888037
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
776 |
0 |
8 |
|i Print version:
|z 9781801076654
|
776 |
0 |
8 |
|i Print version:
|z 1801071977
|z 9781801071970
|w (OCoLC)1259508796
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781801071970/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302499660
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6739165
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3050266
|
994 |
|
|
|a 92
|b IZTAP
|