Cargando…

Complete Beginners Guide to XGBoost Models /

Frank Kane, Sundog Education founder and the author of liveVideo course Machine Learning, Data Science and Deep Learning with Python takes a deep dive into one of the most powerful machine learning algorithms, eXtreme Gradient Boosting, using a Jupyter notebook with Python.

Detalles Bibliográficos
Autor principal: Kane, Frank (Autor, VerfasserIn.)
Autor Corporativo: Safari, an O'Reilly Media Company (Contribuidor, MitwirkendeR.)
Formato: Video
Idioma:Inglés
Publicado: [Erscheinungsort nicht ermittelbar] : Manning Publications, 2020
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1273489698
003 OCoLC
005 20231017213018.0
006 m o c
007 cr uuu---uuuuu
007 vz czazuu
008 211006s2020 mau034 o vleng d
040 |a GBVCP  |b ger  |e rda  |c GBVCP  |d OCLCQ 
035 |a (OCoLC)1273489698 
049 |a UAMI 
100 1 |a Kane, Frank,  |e VerfasserIn.  |4 aut 
245 1 0 |a Complete Beginners Guide to XGBoost Models /  |c Kane, Frank. 
250 |a 1st edition. 
264 1 |a [Erscheinungsort nicht ermittelbar] :  |b Manning Publications,  |c 2020 
264 2 |a Boston, MA :  |b Safari 
300 |a 1 online resource (1 video file, circa 34 min.) 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent/ger 
337 |a Computermedien  |b c  |2 rdamedia/ger 
338 |a Online-Ressource  |b cr  |2 rdacarrier/ger 
500 |a Online resource; Title from title screen (viewed August 14, 2020). 
520 |a Frank Kane, Sundog Education founder and the author of liveVideo course Machine Learning, Data Science and Deep Learning with Python takes a deep dive into one of the most powerful machine learning algorithms, eXtreme Gradient Boosting, using a Jupyter notebook with Python. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a Safari, an O'Reilly Media Company.,  |e MitwirkendeR.  |4 ctb 
856 4 0 |u https://learning.oreilly.com/videos/~/10000MNLV2021131/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP