Cargando…

Conversational AI with Rasa : build, automate, and deploy AI-powered text and voice-based assistants and chatbots /

Create next-level AI assistants and transform how customers communicate with businesses with the power of natural language understanding and dialogue management using Rasa Key Features Understand the architecture and put the underlying principles of the Rasa framework to practice Learn how to quickl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kong, Xiaoquan (Autor), Wang, Guan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000001i 4500
001 OR_on1272888279
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 210803s2021 enk o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d N$T  |d EBLCP  |d UKAHL  |d YDX  |d OCLCF  |d OCLCO  |d OCLCQ  |d IEEEE  |d OCLCO 
015 |a GBC1D3631  |2 bnb 
016 7 |a 020291965  |2 Uk 
019 |a 1272991144  |a 1275413954 
020 |a 1801073880 
020 |a 9781801073882  |q (electronic bk.) 
020 |z 9781801077057 (pbk.) 
020 |z 1801077053 
029 0 |a UKMGB  |b 020291965 
029 1 |a AU@  |b 000070045949 
029 1 |a AU@  |b 000069913006 
035 |a (OCoLC)1272888279  |z (OCoLC)1272991144  |z (OCoLC)1275413954 
037 |a 9781801073882  |b Packt Publishing Pvt. Ltd 
037 |a 10163113  |b IEEE 
050 4 |a QA76.9.N38 
082 0 4 |a 006.35  |2 23 
049 |a UAMI 
100 1 |a Kong, Xiaoquan,  |e author. 
245 1 0 |a Conversational AI with Rasa :  |b build, automate, and deploy AI-powered text and voice-based assistants and chatbots /  |c Xiaoquan Kong, Guan Wang. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2021. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
588 |a Description based on CIP data; resource not viewed. 
520 |a Create next-level AI assistants and transform how customers communicate with businesses with the power of natural language understanding and dialogue management using Rasa Key Features Understand the architecture and put the underlying principles of the Rasa framework to practice Learn how to quickly build different types of chatbots such as task-oriented, FAQ-like, and knowledge graph-based chatbots Explore best practices for working with Rasa and its debugging and optimizing aspects Book DescriptionThe Rasa framework enables developers to create industrial-strength chatbots using state-of-the-art natural language processing (NLP) and machine learning technologies quickly, all in open source. Conversational AI with Rasa starts by showing you how the two main components at the heart of Rasa work – Rasa NLU (natural language understanding) and Rasa Core. You'll then learn how to build, configure, train, and serve different types of chatbots from scratch by using the Rasa ecosystem. As you advance, you'll use form-based dialogue management, work with the response selector for chitchat and FAQ-like dialogs, make use of knowledge base actions to answer questions for dynamic queries, and much more. Furthermore, you'll understand how to customize the Rasa framework, use conversation-driven development patterns and tools to develop chatbots, explore what your bot can do, and easily fix any mistakes it makes by using interactive learning. Finally, you'll get to grips with deploying the Rasa system to a production environment with high performance and high scalability and cover best practices for building an efficient and robust chat system. By the end of this book, you'll be able to build and deploy your own chatbots using Rasa, addressing the common pain points encountered in the chatbot life cycle. What you will learn Use the response selector to handle chitchat and FAQs Create custom actions using the Rasa SDK Train Rasa to handle complex named entity recognition Become skilled at building custom components in the Rasa framework Validate and test dialogs end to end in Rasa Develop and refine a chatbot system by using conversation-driven deployment processing Use TensorBoard for tuning to find the best configuration options Debug and optimize dialogue systems based on Rasa Who this book is for This book is for NLP professionals as well as machine learning and deep learning practitioners who have knowledge of natural language processing and want to build chatbots with Rasa. Anyone with beginner-level knowledge of NLP and deep learning will be able to get the most out of the book. 
505 0 |a Table of Contents Introduction to Chatbots and the Rasa Framework Natural Language Understanding in Rasa Rasa Core Handling Business Logic Working with Response Selector to Handle chitchat and FAQs Knowledge Base Actions to Handle Question Answering Entity Roles and Groups for Complex Named Entity Recognition Customization of Rasa Testing and Production Deployment Conversation-Driven Development and Interactive Learning Debugging, Optimization, and the Community Ecosystem. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Natural language processing (Computer science) 
650 2 |a Natural Language Processing 
650 6 |a Traitement automatique des langues naturelles. 
650 7 |a Natural language processing (Computer science)  |2 fast 
700 1 |a Wang, Guan,  |e author. 
776 0 8 |i Print version:  |z 9781801077057 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801077057/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38859901 
938 |a EBSCOhost  |b EBSC  |n 3021540 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6727089 
938 |a YBP Library Services  |b YANK  |n 302428107 
994 |a 92  |b IZTAP