Cargando…

Data science for marketing analytics : a practical guide to forming a killer marketing strategy through data analysis with Python /

Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language. Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will h...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Baig, Mirza Rahim (Autor), Govindan, Gururajan (Autor), Shrimali, Vishwesh Ravi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2021.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1268111350
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210914s2021 enka o 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d N$T  |d EBLCP  |d UKAHL  |d UKMGB  |d OCLCO  |d ORZ  |d OCLCQ  |d UKOBU  |d IEEEE  |d OCLCO 
015 |a GBC193081  |2 bnb 
016 7 |a 020220568  |2 Uk 
019 |a 1273000723  |a 1273978966  |a 1276852160  |a 1277053383  |a 1281958070  |a 1281982076  |a 1300615638  |a 1303360277 
020 |a 9781800563889  |q (electronic book) 
020 |a 1800563884  |q (electronic book) 
020 |z 1800560478 
020 |z 9781800560475 
029 1 |a UKMGB  |b 020220568 
035 |a (OCoLC)1268111350  |z (OCoLC)1273000723  |z (OCoLC)1273978966  |z (OCoLC)1276852160  |z (OCoLC)1277053383  |z (OCoLC)1281958070  |z (OCoLC)1281982076  |z (OCoLC)1300615638  |z (OCoLC)1303360277 
037 |a 9781800563889  |b Packt Publishing 
037 |a 10163085  |b IEEE 
050 4 |a HF5415.32 
082 0 4 |a 658.834  |2 23 
049 |a UAMI 
100 1 |a Baig, Mirza Rahim,  |e author. 
245 1 0 |a Data science for marketing analytics :  |b a practical guide to forming a killer marketing strategy through data analysis with Python /  |c Mirza Rahim Baig, Gururajan Govindan, and Vishwesh Ravi Shrimali. 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2021. 
300 |a 1 online resource :  |b illustrations (chiefly color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
500 |a Authors of first edition : Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar. 
520 |a Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language. Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learn: Load, clean, and explore sales and marketing data using pandas; Form and test hypotheses using real data sets and analytics tools; Visualize patterns in customer behavior using Matplotlib; Use advanced machine learning models like random forest and SVM; Use various unsupervised learning algorithms for customer segmentation; Use supervised learning techniques for sales prediction; Evaluate and compare different models to get the best outcomes; Optimize models with hyperparameter tuning and SMOTE. Who this book is for: This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily. 
588 0 |a Description based on online resource; title from digital title page (viewed on August 26, 2022). 
505 0 |a Table of Contents Data Preparation and Cleaning Data Exploration and Visualization Unsupervised Learning and Customer Segmentation Evaluating and Choosing the Best Segmentation Approach Predicting Customer Revenue Using Linear Regression More Tools and Techniques for Evaluating Regression Models Supervised Learning: Predicting Customer Churn Fine Tuning Classification Algorithms Multiclass Classification Algorithms. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Consumer behavior  |x Data processing. 
650 0 |a Marketing  |x Data processing. 
650 0 |a Python (Computer program language) 
650 6 |a Consommateurs  |x Comportement  |x Informatique. 
650 6 |a Marketing  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Consumer behavior  |x Data processing  |2 fast 
650 7 |a Marketing  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Govindan, Gururajan,  |e author. 
700 1 |a Shrimali, Vishwesh Ravi,  |e author. 
776 0 8 |i Print version:  |a Baig, Mirza Rahim.  |t Data science for marketing analytics.  |b Second edition.  |d Birmingham : Packt Publishing, 2021  |z 9781800560475  |w (OCoLC)1255864275 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800560475/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302452716 
938 |a EBSCOhost  |b EBSC  |n 3030701 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6723225 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38757764 
994 |a 92  |b IZTAP