The Framework for ML Governance /
Most companies don't have problems building and deploying algorithmic models, but they do struggle to effectively manage them in production. Maximizing the value of machine learning projects in the enterprise requires a robust MLOps program. But there's one key challenge: The problem MLOps...
Autor principal: | Gallatin, Kyle (Autor) |
---|---|
Autor Corporativo: | Safari, an O'Reilly Media Company |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
O'Reilly Media, Inc.,
2021.
|
Edición: | 1st edition. |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
AutoML with Apple CreateML /
por: Deza, Alfredo, et al.
Publicado: (2021) -
Azure ML studio : AutoML /
Publicado: (2023) -
ML Ops : Operationalizing Data Science /
por: Sweenor, David, et al.
Publicado: (2020) -
PROGRAMMING ML.NET.
por: ESPOSITO, DINO
Publicado: (2021) -
MLOps for Edge AutoML with Google AutoML Vision /
por: Deza, Alfredo, et al.
Publicado: (2021)