Cargando…

The Framework for ML Governance /

Most companies don't have problems building and deploying algorithmic models, but they do struggle to effectively manage them in production. Maximizing the value of machine learning projects in the enterprise requires a robust MLOps program. But there's one key challenge: The problem MLOps...

Descripción completa

Detalles Bibliográficos
Autor principal: Gallatin, Kyle (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1266266967
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030821s2021 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d OCLCO  |d AU@  |d OCLCQ  |d TOH  |d OCLCQ 
019 |a 1264230483 
020 |a 9781098100483 
020 |a 1098100484 
020 |z 9781098100476 
024 8 |a 9781098100483 
029 1 |a AU@  |b 000069704241 
029 1 |a AU@  |b 000073556389 
035 |a (OCoLC)1266266967  |z (OCoLC)1264230483 
049 |a UAMI 
100 1 |a Gallatin, Kyle,  |e author. 
245 1 4 |a The Framework for ML Governance /  |c Gallatin, Kyle. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2021. 
300 |a 1 online resource (50 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 74.99 
520 |a Most companies don't have problems building and deploying algorithmic models, but they do struggle to effectively manage them in production. Maximizing the value of machine learning projects in the enterprise requires a robust MLOps program. But there's one key challenge: The problem MLOps sets out to solve isn't just about technology. It's also about process. In this report, Kyle Gallatin defines a framework for ML governance--a comprehensive strategy to help your organization deliver real business value with your MLOps program. While MLOps provides a set of best practices and tools that let you deliver ML at scale, ML governance is how you control and manage those practices and tools. This report shows infrastructure and operations (IO) leaders and CTOs how to approach AI projects in a way that adds value from start to finish. Approach ML governance with a consistent framework that covers ML operations and ML development Dive deep into specifics for implementing governance throughout the ML life cycle Understand why governing the delivery and operations stages are the most difficult parts of a comprehensive ML governance strategy Explore ways to involve the right stakeholders to set up an ML governance program. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed August 25, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098100483/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP