Cargando…

Cyberphysical smart cities infrastructures : optimal operation and intelligent decision making /

"This book introduces novel algorithms and solutions to real-world problems under the umbrella of cyberphysical systems. It is organized in two sections: the first covers optimization algorithms for large-scale decision-making and the second covers intelligent decision-making in cyberphysical s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Amini, M. Hadi (Editor ), Shafie-khah, Miadreza (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1266196787
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 210812t20222022njua ob 001 0 eng
010 |a  2021030665 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d OCLCF  |d DG1  |d UKAHL  |d DG1  |d YDX  |d N$T  |d OCLCO  |d SFB  |d OCLCQ  |d UPM  |d OCLCQ  |d ORMDA  |d LANGC  |d OCLCQ 
019 |a 1290777232 
020 |a 1119748321  |q electronic book 
020 |a 9781119748311  |q electronic book 
020 |a 1119748313  |q electronic book 
020 |a 9781119748342  |q electronic book 
020 |a 1119748348  |q electronic book 
020 |a 9781119748328  |q (electronic bk.) 
020 |z 9781119748304  |q hardcover 
020 |z 1119748305  |q hardcover 
029 1 |a AU@  |b 000070461848 
035 |a (OCoLC)1266196787  |z (OCoLC)1290777232 
037 |a 9781119748304  |b O'Reilly Media 
042 |a pcc 
050 0 4 |a TD159.4  |b .C93 2022 
082 0 0 |a 307.76  |2 23 
049 |a UAMI 
245 0 0 |a Cyberphysical smart cities infrastructures :  |b optimal operation and intelligent decision making /  |c edited by M. Hadi Amini, Florida International University, Miami, Florida, Miadreza Shafie-khah. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2022. 
264 4 |c ©2022 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "This book introduces novel algorithms and solutions to real-world problems under the umbrella of cyberphysical systems. It is organized in two sections: the first covers optimization algorithms for large-scale decision-making and the second covers intelligent decision-making in cyberphysical smart cities. The book takes into account new directions in engineering and science by deploying novel efficient algorithms to enhance near-real-time operation of underlying networks and use of peer-to-peer communication. These include the more in-depth study of special issues on deployment of these algorithms to improve the operation of smart cities. The material is presented in a concise and understandable form, taking into account the requirements for technical texts"--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on April 04, 2022). 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision-Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision-Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI-Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi-agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions. 
505 8 |a Chapter 6 Risk-Aware Cyber-Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk-Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk-Aware Routing Algorithm -- 6.4 Risk-Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk-Aware Routing and Latency-Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C-Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C-Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking. 
505 8 |a 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision-Driven Traffic Management -- 8.2.6 Challenges of Computer Vision-Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F-score -- 9.5 Findings and Discussion. 
505 8 |a 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R-GOOSE and R-SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Smart cities. 
650 0 |a Smart structures. 
650 0 |a Smart power grids. 
650 6 |a Villes intelligentes. 
650 6 |a Structures intelligentes. 
650 6 |a Réseaux électriques intelligents. 
650 7 |a Smart cities.  |2 fast  |0 (OCoLC)fst02002352 
650 7 |a Smart power grids.  |2 fast  |0 (OCoLC)fst01792824 
650 7 |a Smart structures.  |2 fast  |0 (OCoLC)fst01121555 
700 1 |a Amini, M. Hadi,  |e editor. 
700 1 |a Shafie-khah, Miadreza,  |e editor. 
776 0 8 |i Print version:  |t Cyberphysical smart cities infrastructures  |d Hoboken, NJ : John Wiley & Sons, Inc., 2022  |z 9781119748304  |w (DLC) 2021030664 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119748304/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39675778 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39592211 
938 |a EBSCOhost  |b EBSC  |n 3121262 
994 |a 92  |b IZTAP