|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1266196787 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
210812t20222022njua ob 001 0 eng |
010 |
|
|
|a 2021030665
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d OCLCO
|d OCLCF
|d DG1
|d UKAHL
|d DG1
|d YDX
|d N$T
|d OCLCO
|d SFB
|d OCLCQ
|d UPM
|d OCLCQ
|d ORMDA
|d LANGC
|d OCLCQ
|
019 |
|
|
|a 1290777232
|
020 |
|
|
|a 1119748321
|q electronic book
|
020 |
|
|
|a 9781119748311
|q electronic book
|
020 |
|
|
|a 1119748313
|q electronic book
|
020 |
|
|
|a 9781119748342
|q electronic book
|
020 |
|
|
|a 1119748348
|q electronic book
|
020 |
|
|
|a 9781119748328
|q (electronic bk.)
|
020 |
|
|
|z 9781119748304
|q hardcover
|
020 |
|
|
|z 1119748305
|q hardcover
|
029 |
1 |
|
|a AU@
|b 000070461848
|
035 |
|
|
|a (OCoLC)1266196787
|z (OCoLC)1290777232
|
037 |
|
|
|a 9781119748304
|b O'Reilly Media
|
042 |
|
|
|a pcc
|
050 |
0 |
4 |
|a TD159.4
|b .C93 2022
|
082 |
0 |
0 |
|a 307.76
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Cyberphysical smart cities infrastructures :
|b optimal operation and intelligent decision making /
|c edited by M. Hadi Amini, Florida International University, Miami, Florida, Miadreza Shafie-khah.
|
264 |
|
1 |
|a Hoboken, NJ :
|b John Wiley & Sons, Inc.,
|c 2022.
|
264 |
|
4 |
|c ©2022
|
300 |
|
|
|a 1 online resource :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "This book introduces novel algorithms and solutions to real-world problems under the umbrella of cyberphysical systems. It is organized in two sections: the first covers optimization algorithms for large-scale decision-making and the second covers intelligent decision-making in cyberphysical smart cities. The book takes into account new directions in engineering and science by deploying novel efficient algorithms to enhance near-real-time operation of underlying networks and use of peer-to-peer communication. These include the more in-depth study of special issues on deployment of these algorithms to improve the operation of smart cities. The material is presented in a concise and understandable form, taking into account the requirements for technical texts"--
|c Provided by publisher.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on April 04, 2022).
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Biography -- List of Contributors -- Chapter 1 Artificial Intelligence and Cybersecurity: Tale of Healthcare Applications -- 1.1 Introduction -- 1.2 A Brief History of AI -- 1.3 AI in Healthcare -- 1.4 Morality and Ethical Association of AI in Healthcare -- 1.5 Cybersecurity, AI, and Healthcare -- 1.6 Future of AI and Healthcare -- 1.7 Conclusion -- References -- Chapter 2 Data Analytics for Smart Cities: Challenges and Promises -- 2.1 Introduction -- 2.2 Role of Machine Learning in Smart Cities -- 2.3 Smart Cities Data Analytics Framework -- 2.3.1 Data Capturing -- 2.3.2 Data Analysis -- 2.3.2.1 Big Data Algorithms and Challenges -- 2.3.2.2 Machine Learning Process and Challenges -- 2.3.2.3 Deep Learning Process and Challenges -- 2.3.2.4 Learning Process and Emerging New Type of Data Problems -- 2.3.3 Decision-Making Problems in Smart Cities -- 2.3.3.1 Traffic Decision-Making System -- 2.3.3.2 Safe and Smart Environment -- 2.4 Conclusion -- References -- Chapter 3 Embodied AI-Driven Operation of Smart Cities: A Concise Review -- 3.1 Introduction -- 3.2 Rise of the Embodied AI -- 3.3 Breakdown of Embodied AI -- 3.3.1 Language Grounding -- 3.3.2 Language Plus Vision -- 3.3.3 Embodied Visual Recognition -- 3.3.4 Embodied Question Answering -- 3.3.5 Interactive Question Answering -- 3.3.6 Multi-agent Systems -- 3.4 Simulators -- 3.4.1 MINOS -- 3.4.2 Habitat -- 3.5 Future of Embodied AI -- 3.5.1 Higher Intelligence -- 3.5.2 Evolution -- 3.6 Conclusion -- References -- Chapter 4 Analysis of Different Regression Techniques for Battery Capacity Prediction -- 4.1 Introduction -- 4.2 Data Preparation -- 4.2.1 Dataset -- 4.2.2 Feature Extraction -- 4.2.3 Noise Addition -- 4.3 Experiment Design and Machine Learning Algorithms -- 4.4 Result and Analysis -- 4.5 Threats to Validity -- 4.6 Conclusions.
|
505 |
8 |
|
|a Chapter 6 Risk-Aware Cyber-Physical Control for Resilient Smart Cities -- 6.1 Introduction -- 6.2 System Model -- 6.2.1 Communication Latency in Smart Grid Systems -- 6.2.2 Risk Model for Communication Links -- 6.2.3 History of Communication Links -- 6.3 Risk-Aware Quality of Service Routing Using SDN -- 6.3.1 Constrained Shortest Path Routing Problem Formulation -- 6.3.2 SDN Architecture and Implementation -- 6.3.3 Risk-Aware Routing Algorithm -- 6.4 Risk-Aware Adaptive Control -- 6.4.1 Smart Grid Model -- 6.4.2 Parametric Feedback Linearization Control -- 6.4.3 Risk-Aware Routing and Latency-Adaptive Control Scheme -- 6.5 Simulation Environment and Numerical Analysis -- 6.5.1 Avoiding Vulnerable Communication Links While Meeting QoS Constraint -- 6.5.2 Algorithm Overhead Comparison -- 6.5.3 Impact of QoS Constraints -- 6.5.4 Impact on Distributed Control -- 6.6 Conclusions -- References -- Chapter 7 Wind Speed Prediction Using a Robust Possibilistic C-Regression Model Method: A Case Study of Tunisia -- 7.1 Introduction -- 7.2 Data Collection and Method -- 7.2.1 Data Description -- 7.2.2 Robust Possibilistic C-Regression Models -- 7.2.3 Wind Speed Data Analysis Procedure -- 7.3 Experiment and Discussion -- 7.4 Conclusion -- References -- Chapter 8 Intelligent Traffic: Formulating an Applied Research Methodology for Computer Vision and Vehicle Detection -- 8.1 Introduction -- 8.1.1 Introduction -- 8.1.2 Background -- 8.1.3 Problem Statement -- 8.1.3.1 Purpose of Research -- 8.1.3.2 Research Questions -- 8.1.3.3 Study Aim and Objectives -- 8.1.3.4 Significance and Structure of the Research -- 8.2 Literature Review -- 8.2.1 Introduction -- 8.2.2 Machine Learning, Deep Learning, and Computer Vision -- 8.2.2.1 Machine Learning -- 8.2.2.2 Deep Learning -- 8.2.2.3 Computer Vision -- 8.2.3 Object Recognition, Object Detection, and Object Tracking.
|
505 |
8 |
|
|a 8.2.3.1 Object Recognition -- 8.2.3.2 Object Detection -- 8.2.3.3 Object Tracking -- 8.2.4 Edge Computing, Fog Computing, and Cloud Computing -- 8.2.4.1 Edge Computing -- 8.2.4.2 Fog Computing -- 8.2.4.3 Cloud Computing -- 8.2.5 Benefits of Computer Vision-Driven Traffic Management -- 8.2.6 Challenges of Computer Vision-Driven Traffic Management -- 8.2.6.1 Big Data Issues -- 8.2.6.2 Privacy Issues -- 8.2.6.3 Technical Barriers -- 8.3 Research Methodology -- 8.3.1 Research Questions and Objectives -- 8.3.2 Study Design -- 8.3.2.1 Selection Rationale -- 8.3.2.2 Potential Challenges -- 8.3.3 Adapted Study Design Research Approach -- 8.3.4 Selected Hardware and Software -- 8.3.4.1 Hardware: The NVIDIA Jetson Nano Developer Kit and Accompanying Items -- 8.3.5 Hardware Proposed -- 8.3.5.1 Software Stack: NVIDIA Jetpack SDK and Accompanying Requirements (All Iterations) -- 8.3.6 Software Proposed -- 8.4 Conclusion -- References -- Chapter 9 Implementation and Evaluation of Computer Vision Prototype for Vehicle Detection -- 9.1 Prototype Setup -- 9.1.1 Introduction -- 9.1.2 Environment Setup -- 9.2 Testing -- 9.2.1 Design and Development: The Default Model and the First Iteration -- 9.2.2 Testing (Multiple Images) -- 9.2.3 Analysis (Multiple Images) -- 9.2.4 Testing (MP4 File) -- 9.2.5 Testing (Livestream Camera) -- 9.3 Iteration 2: Transfer Learning Model -- 9.3.1 Design and Development -- 9.3.2 Test (Multiple Images) -- 9.3.3 Analysis (Multiple Images) -- 9.3.4 Test (MP4 File) -- 9.3.5 Analysis (MP4 File) -- 9.3.6 Test (Livestream Camera) -- 9.3.7 Analysis (Livestream Camera) -- 9.3.8 Redesign -- 9.4 Iteration 3: Increased Sample Size and Change of Accuracy Analysis (Images) -- 9.4.1 Design and Development -- 9.4.2 Testing -- 9.4.3 Analysis -- 9.4.3.1 Confusion Matrices -- 9.4.3.2 Precision, Recall, and F-score -- 9.5 Findings and Discussion.
|
505 |
8 |
|
|a 9.5.1 Findings: Vehicle Detection Across Multiple Images -- 9.5.2 Findings: Vehicle Detection Performance on an MP4 File -- 9.5.3 Findings: Vehicle Detection on Livestream Camera -- 9.5.4 Findings: Iteration 3 -- 9.5.5 Addressing the Research Questions -- 9.5.6 Assessment of Suitability -- 9.5.7 Future Improvements -- 9.6 Conclusion -- References -- Chapter 10 A Review on Applications of the Standard Series IEC 61850 in Smart Grid Applications -- 10.1 Introduction -- 10.2 Overview of IEC 61850 Standards -- 10.3 IEC 61850 Protocols and Substandards -- 10.3.1 IEC 61850 Standards and Classifications -- 10.3.2 Basics of IEC 61850 Architecture Model -- 10.3.3 IEC 61850 Class Model -- 10.3.4 IEC 61850 Logical Interfaces (Functional Hierarchy of IEC 61850) -- 10.4 IEC 61850 Features -- 10.4.1 MMS -- 10.4.2 GOOSE -- 10.4.3 Sampled Measured Value (SMV) or SV -- 10.4.4 R-GOOSE and R-SV -- 10.4.4.1 Application in Transmission Systems -- 10.4.4.2 Application in Distribution Systems -- 10.4.5 Web Services -- 10.5 Relevant Application -- 10.5.1 Substation Automation System (SAS) -- 10.5.2 Energy Management System (EMS) -- 10.5.3 Distribution Management System (DMS) -- 10.5.3.1 Feeder Balancing and Loss Minimization Distribution -- 10.5.3.2 Voltage/VAR Optimization (VVO) and Conservation Voltage Reduction -- 10.5.3.3 Fault Location, Isolation, and Service Restoration -- 10.5.4 Distribution Automation (DA) -- 10.5.4.1 Voltage/VAR Control -- 10.5.4.2 Fault Detection and Isolation -- 10.5.4.3 Service Restoration Use Case -- 10.5.5 Distributed Generation and Demand Response Management (Distributed Energy Resource [DER]) -- 10.5.5.1 Storage -- 10.5.5.2 Solar Panels -- 10.5.5.3 Wind Farm -- 10.5.5.4 Virtual Power Plant (VPP) -- 10.5.6 Advanced Metering Infrastructure (AMI) -- 10.5.7 Electric Vehicle (EV).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Smart cities.
|
650 |
|
0 |
|a Smart structures.
|
650 |
|
0 |
|a Smart power grids.
|
650 |
|
6 |
|a Villes intelligentes.
|
650 |
|
6 |
|a Structures intelligentes.
|
650 |
|
6 |
|a Réseaux électriques intelligents.
|
650 |
|
7 |
|a Smart cities.
|2 fast
|0 (OCoLC)fst02002352
|
650 |
|
7 |
|a Smart power grids.
|2 fast
|0 (OCoLC)fst01792824
|
650 |
|
7 |
|a Smart structures.
|2 fast
|0 (OCoLC)fst01121555
|
700 |
1 |
|
|a Amini, M. Hadi,
|e editor.
|
700 |
1 |
|
|a Shafie-khah, Miadreza,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Cyberphysical smart cities infrastructures
|d Hoboken, NJ : John Wiley & Sons, Inc., 2022
|z 9781119748304
|w (DLC) 2021030664
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781119748304/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH39675778
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH39592211
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3121262
|
994 |
|
|
|a 92
|b IZTAP
|