Cargando…

Natural language processing recipes : unlocking text data with machine learning and deep learning using Python /

Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kulkarni, Akshay
Otros Autores: Shivananda, Adarsha
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress, 2021.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1265462358
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---aucuu
008 210828s2021 cau o 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d YDX  |d OCLCO  |d OCLCF  |d N$T  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1266212151  |a 1280525724 
020 |a 9781484273517  |q (electronic bk.) 
020 |a 1484273516  |q (electronic bk.) 
020 |z 9781484273500 
020 |z 1484273508 
024 7 |a 10.1007/978-1-4842-7351-7  |2 doi 
035 |a (OCoLC)1265462358  |z (OCoLC)1266212151  |z (OCoLC)1280525724 
050 4 |a QA76.9.N38 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3/5  |2 23 
049 |a UAMI 
100 1 |a Kulkarni, Akshay. 
245 1 0 |a Natural language processing recipes :  |b unlocking text data with machine learning and deep learning using Python /  |c Akshay Kulkarni, Adarsha Shivananda. 
250 |a 2nd ed. 
260 |a Berkeley, CA :  |b Apress,  |c 2021. 
300 |a 1 online resource (302 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Extracting the Data -- Introduction -- Client Data -- Free Sources -- Web Scraping -- Recipe 1-1. Collecting Data -- Problem -- Solution -- How It Works -- Step 1-1. Log in to the Twitter developer portal -- Step 1-2. Execute query in Python -- Recipe 1-2. Collecting Data from PDFs -- Problem -- Solution -- How It Works -- Step 2-1. Install and import all the necessary libraries -- Step 2-2. Extract text from a PDF file -- Recipe 1-3. Collecting Data from Word Files 
505 8 |a Problem -- Solution -- How It Works -- Step 3-1. Install and import all the necessary libraries -- Step 3-2. Extract text from a Word file -- Recipe 1-4. Collecting Data from JSON -- Problem -- Solution -- How It Works -- Step 4-1. Install and import all the necessary libraries -- Step 4-2. Extract text from a JSON file -- Recipe 1-5. Collecting Data from HTML -- Problem -- Solution -- How It Works -- Step 5-1. Install and import all the necessary libraries -- Step 5-2. Fetch the HTML file -- Step 5-3. Parse the HTML file -- Step 5-4. Extract a tag value 
505 8 |a Step 5-5. Extract all instances of a particular tag -- Step 5-6. Extract all text from a particular tag -- Recipe 1-6. Parsing Text Using Regular Expressions -- Problem -- Solution -- How It Works -- Tokenizing -- Extracting Email IDs -- Replacing Email IDs -- Extracting Data from an eBook and Performing regex -- Recipe 1-7. Handling Strings -- Problem -- Solution -- How It Works -- Replacing Content -- Concatenating Two Strings -- Searching for a Substring in a String -- Recipe 1-8. Scraping Text from the Web -- Problem -- Solution -- How It Works -- Step 8-1. Install all the necessary libraries 
505 8 |a Step 8-2. Import the libraries -- Step 8-3. Identify the URL to extract the data -- Step 8-4. Request the URL and download the content using Beautiful Soup -- Step 8-5. Understand the website's structure to extract the required information -- Step 8-6. Use Beautiful Soup to extract and parse the data from HTML tags -- Step 8-7. Convert lists to a data frame and perform an analysis that meets business requirements -- Step 8-8. Download the data frame -- Chapter 2: Exploring and Processing Text Data -- Recipe 2-1. Converting Text Data to Lowercase -- Problem -- Solution -- How It Works 
505 8 |a Step 1-1. Read/create the text data -- Step 1-2. Execute the lower() function on the text data -- Recipe 2-2. Removing Punctuation -- Problem -- Solution -- How It Works -- Step 2-1. Read/create the text data -- Step 2-2. Execute the replace() function on the text data -- Recipe 2-3. Removing Stop Words -- Problem -- Solution -- How It Works -- Step 3-1. Read/create the text data -- Step 3-2. Remove punctuation from the text data -- Recipe 2-4. Standardizing Text -- Problem -- Solution -- How It Works -- Step 4-1. Create a custom lookup dictionary 
500 |a Step 4-2. Create a custom function for text standardization. 
500 |a Includes index. 
520 |a Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters explain advanced industrial applications of NLP with solution implementation and leveraging the power of deep learning techniques for NLP problems. It also employs state-of-the-art advanced RNNs, such as long short-term memory, to solve complex text generation tasks. After reading this book, you will have a clear understanding of the challenges faced by different industries and you will have worked on multiple examples of implementing NLP in the real world. You will: Know the core concepts of implementing NLP and various approaches to natural language processing (NLP), including NLP using Python libraries such as NLTK, textblob, SpaCy, Standford CoreNLP, and more Implement text pre-processing and feature engineering in NLP, including advanced methods of feature engineering Understand and implement the concepts of information retrieval, text summarization, sentiment analysis, text classification, and other advanced NLP techniques leveraging machine learning and deep learning. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 8, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Natural language processing (Computer science) 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 2 |a Natural Language Processing 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Shivananda, Adarsha. 
776 0 8 |i Print version:  |a Kulkarni, Akshay.  |t Natural Language Processing Recipes.  |d Berkeley, CA : Apress L.P., ©2021  |z 9781484273500 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484273517/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39211770 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6712955 
938 |a EBSCOhost  |b EBSC  |n 3019434 
938 |a YBP Library Services  |b YANK  |n 302425965 
994 |a 92  |b IZTAP