Cargando…

Mastering transformers : build SOTA models from scratch with advanced natural language processing techniques /

Take a problem-solving approach to learning all about transformers and get up and running in no time by implementing methodologies that will build the future of NLP Key Features Explore quick prototyping with up-to-date Python libraries to create effective solutions to industrial problems Solve adva...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yıldırım, Savaş (Autor), Asgari-Chenaghlu, Meysam (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000001i 4500
001 OR_on1263808575
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 210707s2021 enk o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d OCLCF  |d N$T  |d YDX  |d UKAHL  |d OCLCO  |d OCLCQ  |d IEEEE  |d TEFOD 
015 |a GBC1B2533  |2 bnb 
016 7 |a 020259669  |2 Uk 
019 |a 1269099916 
020 |a 1801078890 
020 |a 9781801078894  |q (electronic bk.) 
020 |z 9781801077651 (pbk.) 
020 |z 1801077657 
029 0 |a UKMGB  |b 020259669 
029 1 |a AU@  |b 000070046372 
029 1 |a AU@  |b 000069697708 
035 |a (OCoLC)1263808575  |z (OCoLC)1269099916 
037 |a 9781801078894  |b Packt Publishing Pvt. Ltd 
037 |a 10163524  |b IEEE 
037 |a BA75C9BB-218E-4E60-9331-4F346D0C15D9  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.N38 
082 0 4 |a 006.35  |2 23 
049 |a UAMI 
100 1 |a Yıldırım, Savaş,  |e author. 
245 1 0 |a Mastering transformers :  |b build SOTA models from scratch with advanced natural language processing techniques /  |c Savas Yildirim, Meysam Asgari-chenaghlu. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2021. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
588 |a Description based on CIP data; resource not viewed. 
520 |a Take a problem-solving approach to learning all about transformers and get up and running in no time by implementing methodologies that will build the future of NLP Key Features Explore quick prototyping with up-to-date Python libraries to create effective solutions to industrial problems Solve advanced NLP problems such as named-entity recognition, information extraction, language generation, and conversational AI Monitor your model's performance with the help of BertViz, exBERT, and TensorBoard Book DescriptionTransformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models. What you will learn Explore state-of-the-art NLP solutions with the Transformers library Train a language model in any language with any transformer architecture Fine-tune a pre-trained language model to perform several downstream tasks Select the right framework for the training, evaluation, and production of an end-to-end solution Get hands-on experience in using TensorBoard and Weights & Biases Visualize the internal representation of transformer models for interpretability Who this book is for This book is for deep learning researchers, hands-on NLP practitioners, as well as ML/NLP educators and students who want to start their journey with Transformers. Beginner-level machine learning knowledge and a good command of Python will help you get the best out of this book. 
505 0 |a Table of Contents From Bag-of-Words to the Transformers A Hands-On Introduction to the Subject Autoencoding Language Models Autoregressive and Other Language Models Fine-Tuning Language Models for Text Classification Fine-Tuning Language Models for Token Classification Text Representation Working with Efficient Transformers Cross-Lingual and Multilingual Language Modeling Serving Transformer Models Attention Visualization and Experiment Tracking. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Natural language processing (Computer science) 
650 6 |a Traitement automatique des langues naturelles. 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
700 1 |a Asgari-Chenaghlu, Meysam,  |e author. 
776 0 8 |i Print version:  |z 9781801077651 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801077651/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38949446 
938 |a EBSCOhost  |b EBSC  |n 2985752 
938 |a YBP Library Services  |b YANK  |n 302361725 
994 |a 92  |b IZTAP