Cargando…

Fast, documented Machine Learning APIs with FastAPI /

Use FastAPI to expose an HTTP API for fast live predictions using an ONNX Machine Learning Model. FastAPI is a Python web framework that provides easy development of documented HTTP APIs by offering self-documented endpoints with Swagger - a tool to describe, document, and use RESTful web services....

Descripción completa

Detalles Bibliográficos
Autores principales: Deza, Alfredo (Autor, VerfasserIn.), Gift, Noah (Autor, VerfasserIn.)
Autor Corporativo: Safari, an O'Reilly Media Company (Contribuidor, MitwirkendeR.)
Formato: Video
Idioma:Inglés
Publicado: [Erscheinungsort nicht ermittelbar] : Pragmatic AI Solutions, 2021
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1263358879
003 OCoLC
005 20231017213018.0
006 m o c
007 cr uuu---uuuuu
007 vz czazuu
008 210811s2021 mau040 o vleng d
040 |a GBVCP  |b ger  |e rda  |c GBVCP  |d OCLCQ 
035 |a (OCoLC)1263358879 
049 |a UAMI 
100 1 |a Deza, Alfredo,  |e VerfasserIn.  |4 aut 
245 1 0 |a Fast, documented Machine Learning APIs with FastAPI /  |c Deza, Alfredo. 
250 |a 1st edition. 
264 1 |a [Erscheinungsort nicht ermittelbar] :  |b Pragmatic AI Solutions,  |c 2021 
264 2 |a Boston, MA :  |b Safari 
300 |a 1 online resource (1 video file, circa 40 min.) 
336 |a zweidimensionales bewegtes Bild  |b tdi  |2 rdacontent/ger 
337 |a Computermedien  |b c  |2 rdamedia/ger 
338 |a Online-Ressource  |b cr  |2 rdacarrier/ger 
500 |a Online resource; Title from title screen (viewed July 16, 2021). 
520 |a Use FastAPI to expose an HTTP API for fast live predictions using an ONNX Machine Learning Model. FastAPI is a Python web framework that provides easy development of documented HTTP APIs by offering self-documented endpoints with Swagger - a tool to describe, document, and use RESTful web services. Learn how to quickly put together an API which validates requests, and self-documents its endpoints using OpenAPI via Swagger. Quickly produce a robust interface for others to consume your Machine Learning model by following core best-practices of MLOps. Parts of this video cover the basics of packaging Machine Learning models, as covered in the Practical MLOps book. Topics include: * Create a Python project to serve live predictions using FastAPI * Use a Dockerfile to package the model and the API using Docker containerization * With minimal Python code, expose an ONNX model to perform sentiment analysis over an HTTP endpoint * Dynamically interact with the API using the self-documented endpoint in the container. Useful links: * Demo Github Repository with sample code * Practical MLOps book * FastAPI Intro tutorial * RoBERTa ONNX Model for sentiment analysis. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Gift, Noah,  |e VerfasserIn.  |4 aut 
710 2 |a Safari, an O'Reilly Media Company.,  |e MitwirkendeR.  |4 ctb 
856 4 0 |u https://learning.oreilly.com/videos/~/50117VIDEOPAIML/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP