From Euclidean to Hilbert spaces : introduction to functional analysis and its applications /
From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken :
ISTE Ltd. ; Wiley,
2021.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Inner Product Spaces (Pre-Hilbert)
- The Discrete Fourier Transform and its Applications to Signal and Image Processing
- Lebesgue's Measure and Integration Theory
- Banach Spaces and Hilbert Spaces
- The Geometric Structure of Hilbert Spaces
- Bounded Linear Operators in Hilbert Spaces
- Quotient Space
- The Transpose (or Dual)of a Linear Operator
- Uniform, Strong and Weak Convergence.