Cargando…

From Euclidean to Hilbert spaces : introduction to functional analysis and its applications /

From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Provenzi, Edoardo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken : ISTE Ltd. ; Wiley, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1263023789
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210807s2021 enk ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d DG1  |d OCLCO  |d OCLCF  |d UKMGB  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UPM  |d OCLCQ  |d ORMDA  |d LANGC  |d OCLCQ 
015 |a GBC1D7818  |2 bnb 
016 7 |a 020300538  |2 Uk 
020 |a 9781119851318  |q (electronic bk. ;  |q oBook) 
020 |a 1119851319  |q (electronic bk. ;  |q oBook) 
020 |a 9781119851301  |q (electronic bk.) 
020 |a 1119851300  |q (electronic bk.) 
020 |z 1786306824 
020 |z 9781786306821 
024 7 |a 10.1002/9781119851318  |2 doi 
029 1 |a AU@  |b 000069952135 
029 1 |a UKMGB  |b 020300538 
035 |a (OCoLC)1263023789 
037 |a 9781119851301  |b Wiley 
037 |a 9781786306821  |b O'Reilly Media 
050 4 |a QA320 
082 0 4 |a 515.7  |2 23 
049 |a UAMI 
100 1 |a Provenzi, Edoardo. 
245 1 0 |a From Euclidean to Hilbert spaces :  |b introduction to functional analysis and its applications /  |c Edoardo Provenzi. 
260 |a London :  |b ISTE Ltd. ;  |a Hoboken :  |b Wiley,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Inner Product Spaces (Pre-Hilbert) -- The Discrete Fourier Transform and its Applications to Signal and Image Processing -- Lebesgue's Measure and Integration Theory -- Banach Spaces and Hilbert Spaces -- The Geometric Structure of Hilbert Spaces -- Bounded Linear Operators in Hilbert Spaces -- Quotient Space -- The Transpose (or Dual)of a Linear Operator -- Uniform, Strong and Weak Convergence. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (John Wiley, viewed August 31, 2021). 
520 |a From Euclidian to Hilbert Spaces analyzes the transition from finite dimensional Euclidian spaces to infinite-dimensional Hilbert spaces, a notion that can sometimes be difficult for non-specialists to grasp. The focus is on the parallels and differences between the properties of the finite and infinite dimensions, noting the fundamental importance of coherence between the algebraic and topological structure, which makes Hilbert spaces the infinite-dimensional objects most closely related to Euclidian spaces. The common thread of this book is the Fourier transform, which is examined starting from the discrete Fourier transform (DFT), along with its applications in signal and image processing, passing through the Fourier series and finishing with the use of the Fourier transform to solve differential equations. The geometric structure of Hilbert spaces and the most significant properties of bounded linear operators in these spaces are also covered extensively. The theorems are presented with detailed proofs as well as meticulously explained exercises and solutions, with the aim of illustrating the variety of applications of the theoretical results. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Functional analysis. 
650 6 |a Analyse fonctionnelle. 
650 7 |a Functional analysis.  |2 fast  |0 (OCoLC)fst00936061 
776 0 8 |i Print version:  |a Provenzi, Edoardo.  |t From Euclidean to Hilbert spaces.  |d London : ISTE Ltd. ; Hoboken : Wiley, 2021  |z 1786306824  |z 9781786306821  |w (OCoLC)1255463937 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781786306821/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39128808 
938 |a YBP Library Services  |b YANK  |n 302368412 
994 |a 92  |b IZTAP