Cargando…

Quantum machine learning : an applied approach : the theory and application of quantum machine learning in science and industry /

Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ganguly, Santanu (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1262436365
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210801s2021 caua ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d OCLCO  |d N$T  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781484270981  |q (electronic bk.) 
020 |a 1484270983  |q (electronic bk.) 
020 |z 9781484270974 
020 |z 1484270975 
024 7 |a 10.1007/978-1-4842-7098-1  |2 doi 
029 1 |a AU@  |b 000069691169 
035 |a (OCoLC)1262436365 
050 4 |a QA76.889  |b .G36 2021 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.1  |2 23 
049 |a UAMI 
100 1 |a Ganguly, Santanu,  |e author. 
245 1 0 |a Quantum machine learning :  |b an applied approach : the theory and application of quantum machine learning in science and industry /  |c Santanu Ganguly. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
264 4 |c Ã2021 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the authors active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. You will: Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive. 
505 0 |a Ch 1: Rise of the Quantum Machines: Fundamentals -- Ch 2: Machine Learning -- Ch 3: Neural Networks -- Ch 4: Quantum Information Science -- Ch 5: QML Algorithms-I -- Ch 6: QML Algorithms-II -- Ch 7: Quantum Learning Models -- Ch 8: The Future of QML in Research and Industry. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 5, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Quantum computing. 
650 0 |a Machine learning. 
650 6 |a Informatique quantique. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
650 7 |a Quantum computing  |2 fast 
776 0 8 |i Print version:  |z 1484270975  |z 9781484270974  |w (OCoLC)1245347024 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484270981/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39153077 
938 |a EBSCOhost  |b EBSC  |n 2985418 
938 |a YBP Library Services  |b YANK  |n 302361023 
994 |a 92  |b IZTAP