Cargando…

Public policy analytics : code and context for data science in government /

Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory ind...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steif, Ken (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, 2021.
Colección:Chapman & Hall/CRC data science series
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_on1262330492
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 210513s2021 flua ob 001 0 eng d
040 |a UKAHL  |b eng  |e rda  |c UKAHL  |d YDX  |d UKMGB  |d OCLCO  |d YDX  |d TYFRS  |d OCLCF  |d N$T  |d UKAHL  |d OCLCO  |d ORMDA  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBC177054  |2 bnb 
016 7 |a 020195537  |2 Uk 
020 |a 1000401618 
020 |a 9781003054658  |q electronic book 
020 |a 100305465X 
020 |a 9781000401578  |q electronic book 
020 |a 100040157X 
020 |a 9781000401615  |q (electronic bk.) 
020 |z 9780367516253 (hbk.) 
020 |z 9780367507619 (pbk.) 
024 8 |a 10.1201/9781003054658  |2 doi 
029 1 |a UKMGB  |b 020195537 
029 1 |a AU@  |b 000069752311 
035 |a (OCoLC)1262330492 
037 |a 9781000401615  |b Ingram Content Group 
037 |a 9781003054658  |b Taylor & Francis 
037 |a 9781000401615  |b O'Reilly Media 
050 4 |a JK468.A8  |b S72 2021 
072 7 |a BUS  |x 061000  |2 bisacsh 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a COM  |x 012000  |2 bisacsh 
072 7 |a UN  |2 bicssc 
082 0 4 |a 352.3/80285  |2 23 
049 |a UAMI 
100 1 |a Steif, Ken,  |e author. 
245 1 0 |a Public policy analytics :  |b code and context for data science in government /  |c Ken Steif. 
264 1 |a Boca Raton :  |b CRC Press,  |c 2021. 
300 |a 1 online resource  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Chapman & Hall/CRC data science series 
504 |a Includes bibliographical references and index. 
520 |a Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand spatial process' and develop spatial analytics; how to develop useful' predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and Planning' are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government. 
545 0 |a Ken Steif Ph.D is the Director of the Master of Urban Spatial Analytics program at the University of Pennsylvania and an Associate Professor of Practice in the City Planning Program. He teaches courses on the application of spatial analysis, statistics, predictive modeling and data visualization to solve traditional and contemporary public policy programs. Dr. Steif also is the founder of a consultancy that develops analytics for both public and private-sector clients. He lives in West Philadelphia with his wife Diana and sons Emil and Malcolm.You can follow him on Twitter @KenSteif. 
505 0 |a <P>Preface </p><p>Introduction <br><br><strong>Indicators for Transit Oriented Development </strong><br>1.1 Why Start With Indicators? <br>1.1.1 Mapping & scale bias in areal aggregate data <br>1.2 Setup <br>1.2.1 Downloading & wrangling Census data <br>1.2.2 Wrangling transit open data <br>1.2.3 Relating tracts & subway stops in space <br>1.3 Developing TOD Indicators <br>1.3.1 TOD indicator maps <br>1.3.2 TOD indicator tables <br>1.3.3 TOD indicator plots <br>1.4 Capturing three submarkets of interest <br>1.5 Conclusion: Are Philadelphians willing to pay for TOD? <br>1.6 Assignment -- Study TOD in your city <br><br><br><strong>Expanding the Urban Growth Boundary</strong><br>2.1 Introduction -- Lancaster development<br>2.1.1 The bid-rent model<br>2.1.2 Setup Lancaster data <br>2.2 Identifying areas inside & outside of the Urban Growth Area <br>2.2.1 Associate each inside/outside buffer with its respective town<br>2.2.2 Building density by town & by inside/outside the UGA <br>2.2.3 Visualize buildings inside & outside the UGA<br>2.3 Return to Lancaster's Bid Rent <br>2.4 Conclusion -- On boundaries <br>2.5 Assignment -- Boundaries in your community </p><p><strong>Intro to geospatial machine learning, Part 1 </strong><br>3.1 Machine learning as a Planning tool <br>3.1.1 Accuracy & generalizability <br>3.1.2 The machine learning process <br>3.1.3 The hedonic model <br>3.2 Data wrangling -- Home price & crime data <br>3.2.1 Feature Engineering -- Measuring exposure to crime <br>3.2.2 Exploratory analysis: Correlation<br>3.3 Introduction to Ordinary Least Squares Regression <br>3.3.1 Our first regression model<br>3.3.2 More feature engineering & colinearity <br>3.4 Cross-validation & return to goodness of fit<br>3.4.1 Accuracy -- Mean Absolute Error <br>3.4.2 Generalizability -- Cross-validation <br>3.5 Conclusion -- Our first model <br>3.6 Assignment -- Predict house prices </p><p><strong>Intro to geospatial machine learning, Part 2</strong><br>4.1 On the spatial process of home prices <br>4.1.1 Setup & Data Wrangling <br>4.2 Do prices & errors cluster? The Spatial Lag<br>4.2.1 Do model errors cluster? -- Moran's I<br>4.3 Accounting for neighborhood <br>4.3.1 Accuracy of the neighborhood model <br>4.3.2 Spatial autocorrelation in the neighborhood model <br>4.3.3 Generalizability of the neighborhood model<br>4.4 Conclusion -- Features at multiple scales</p><p><strong>Geospatial risk modeling -- Predictive Policing </strong><br>5.1 New predictive policing tools <br>5.1.1 Generalizability in geospatial risk models <br>5.1.2 From Broken Windows Theory to Broken Windows Policing <br>5.1.3 Setup <br>5.2 Data wrangling: Creating the fishnet<br>5.2.1 Data wrangling: Joining burglaries to the fishnet <br>5.2.2 Wrangling risk factors <br>5.3 Feature engineering -- Count of risk factors by grid cell <br>5.3.1 Feature engineering -- Nearest neighbor features <br>5.3.2 Feature Engineering -- Measure distance to one point <br>5.3.3 Feature Engineering -- Create the final-net <br>5.4 Exploring the spatial process of burglary <br>5.4.1 Correlation tests <br>5.5 Poisson Regression <br>5.5.1 Cross-validated Poisson Regression <br>5.5.2 Accuracy & Generalzability <br>5.5.3 Generalizability by neighborhood context<br>5.5.4 Does this model allocate better than traditional crime hotspots? <br>5.6 Conclusion -- Bias but useful? <br>5.7 Assignment -- Predict risk </p><p><strong>People-based ML models</strong><br>6.1 Bounce to work<br>6.2 Exploratory analysis <br>6.3 Logistic regression<br>6.3.1 Training/Testing sets <br>6.3.2 Estimate a churn model <br>6.4 Goodness of Fit <br>6.4.1 Roc Curves <br>6.5 Cross-validation <br>6.6 Generating costs and benefits <br>6.6.1 Optimizing the cost/benefit relationship <br>6.7 Conclusion -- churn <br>6.8 Assignment -- Target a subsidy </p><p><strong>People-Based ML Models: Algorithmic Fairness</strong><br>7.1 Introduction <br>7.1.1 The spectre of disparate impact <br>7.1.2 Modeling judicial outcomes <br>7.1.3 Accuracy and generalizability in recidivism algorithms <br>7.2 Data and exploratory analysis <br>7.3 Estimate two recidivism models <br>7.3.1 Accuracy & Generalizability <br>7.4 What about the threshold?</p><p>7.5 Optimizing 'equitable' thresholds <br>7.6 Assignment -- Memo to the Mayor </p><p><br><strong>Predicting rideshare demand</strong><br>8.1 Introduction -- ride share <br>8.2 Data Wrangling -- ride share <br>8.2.1 Lubridate<br>8.2.2 Weather data <br>8.2.3 Subset a study area using neighborhoods <br>8.2.4 Create the final space/time panel <br>8.2.5 Split training and test<br>8.2.6 What about distance features? <br>8.3 Exploratory Analysis -- ride share <br>8.3.1 Trip-Count serial autocorrelation <br>8.3.2 Trip-Count spatial autocorrelation <br>8.3.3 Space/time correlation? <br>8.3.4 Weather<br>8.4 Modeling and validation using purrr::map<br>8.4.1 A short primer on nested tibbles <br>8.4.2 Estimate a ride share forecast <br>8.4.3 Validate test set by time <br>8.4.4 Validate test set by space <br>8.5 Conclusion -- Dispatch<br>8.6 Assignment -- Predict bike share trips</p><p>Conclusion -- Algorithmic Governance </p><p>Index</p> 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Political planning  |x Data processing. 
651 0 |a United States  |x Politics and government  |x Data processing. 
650 6 |a Politique publique  |x Informatique. 
651 6 |a États-Unis  |x Politique et gouvernement  |x Informatique. 
650 7 |a BUSINESS & ECONOMICS / Statistics  |2 bisacsh 
650 7 |a COMPUTERS / General  |2 bisacsh 
650 7 |a COMPUTERS / Computer Graphics / General  |2 bisacsh 
650 7 |a Political planning  |x Data processing  |2 fast 
650 7 |a Politics and government  |x Data processing  |2 fast 
651 7 |a United States  |2 fast 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |z 9780367516253 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781000401615/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38177294 
938 |a YBP Library Services  |b YANK  |n 302359768 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38178336 
938 |a EBSCOhost  |b EBSC  |n 2982063 
994 |a 92  |b IZTAP