Cargando…

Machine learning engineering with MLflow manage the end-to-end machine learning lifecycle with MLflow /

Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key Features Explore machine learning workflows for stating ML problems in a concise and clear manner using MLflow Use MLflow to iteratively develop a ML model and manage it Disco...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lauchande, Natu (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_on1262327249
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 210607s2021 enk fo 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |e pn  |c UKAHL  |d UKMGB  |d OCLCO  |d OCLCF  |d EBLCP  |d N$T  |d OCLCO  |d YDX  |d OCLCQ  |d IEEEE 
015 |a GBC196794  |2 bnb 
016 7 |a 020227006  |2 Uk 
020 |a 1800561695 
020 |a 9781800561694  |q (electronic bk.) 
020 |z 9781800560796 (pbk.) 
029 1 |a UKMGB  |b 020227006 
029 1 |a AU@  |b 000069697477 
035 |a (OCoLC)1262327249 
037 |a 9781800561694  |b Packt Publishing Pvt. Ltd 
037 |a 10162559  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Lauchande, Natu,  |e author. 
245 1 0 |a Machine learning engineering with MLflow  |b manage the end-to-end machine learning lifecycle with MLflow /  |c Natu Lauchande. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2021. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
505 0 |a Cover -- Title -- Copyright and Credits -- Table of Contents -- Section 1: Problem Framing and Introductions -- Chapter 1: Introducing MLflow -- Technical requirements -- What is MLflow? -- Getting started with MLflow -- Developing your first model with MLflow -- Exploring MLflow modules -- Exploring MLflow projects -- Exploring MLflow tracking -- Exploring MLflow Models -- Exploring MLflow Model Registry -- Summary -- Further reading -- Chapter 2: Your Machine Learning Project -- Technical requirements -- Exploring the machine learning process -- Framing the machine learning problem 
505 8 |a Problem statement -- Success and failure definition -- Model output -- Output usage -- Heuristics -- Data layer definition -- Introducing the stock market prediction problem -- Stock movement predictor -- Problem statement -- Success and failure definition -- Model output -- Output usage -- Heuristics -- Data layer definition -- Sentiment analysis of market influencers -- Problem statement -- Success and failure definition -- Model output -- Output usage -- Heuristics -- Data layer definition -- Developing your machine learning baseline pipeline -- Summary -- Further reading 
505 8 |a Section 2: Model Development and Experimentation -- Chapter 3: Your Data Science Workbench -- Technical requirements -- Understanding the value of a data science workbench -- Creating your own data science workbench -- Building our workbench -- Using the workbench for stock prediction -- Starting up your environment -- Updating with your own algorithms -- Summary -- Further reading -- Chapter 4: Experiment Management in MLflow -- Technical requirements -- Getting started with the experiments module -- Defining the experiment -- Exploring the dataset -- Adding experiments 
505 8 |a Steps for setting up a logistic-based classifier -- Comparing different models -- Tuning your model with hyperparameter optimization -- Summary -- Further reading -- Chapter 5: Managing Models with MLflow -- Technical requirements -- Understanding models in MLflow -- Exploring model flavors in MLflow -- Custom models -- Managing model signatures and schemas -- Introducing Model Registry -- Adding your best model to Model Registry -- Managing the model development life cycle -- Summary -- Further reading -- Section 3: Machine Learning in Production 
505 8 |a Chapter 6: Introducing ML Systems Architecture -- Technical requirements -- Understanding challenges with ML systems and projects -- Surveying state-of-the-art ML platforms -- Getting to know Michelangelo -- Getting to know Kubeflow -- Architecting the PsyStock ML platform -- Describing the features of the ML platform -- High-level systems architecture -- MLflow and other ecosystem tools -- Summary -- Further reading -- Chapter 7: Data and Feature Management -- Technical requirements -- Structuring your data pipeline project -- Acquiring stock data -- Checking data quality 
520 |a Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key Features Explore machine learning workflows for stating ML problems in a concise and clear manner using MLflow Use MLflow to iteratively develop a ML model and manage it Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environment Book DescriptionMLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments. This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you’ll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins. By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments. What you will learn Develop your machine learning project locally with MLflow’s different features Set up a centralized MLflow tracking server to manage multiple MLflow experiments Create a model life cycle with MLflow by creating custom models Use feature streams to log model results with MLflow Develop the complete training pipeline infrastructure using MLflow features Set up an inference-based API pipeline and batch pipeline in MLflow Scale large volumes of data by integrating MLflow with high-performance big data libraries Who this book is for This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |z 9781800560796 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800560796/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 302348603 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6791588 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38757762 
938 |a EBSCOhost  |b EBSC  |n 2972632 
994 |a 92  |b IZTAP