Cargando…

Advanced Algorithms and Data Structures /

Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You'll discover cutting-edge approaches to a variety of tricky scenarios. You'll even learn to design your own data stru...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: La Rocca, Marcello
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shelter Island, NY : Manning Publications, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • 1 Introducing data structures
  • Part 1. Improving over basic data structures
  • 2 Improving priority queues: d-way heaps
  • 3 Treaps: Using randomization to balance binary search trees
  • 4 Bloom filters: Reducing the memory for tracking content
  • 5 Disjoint sets: Sub-linear time processing
  • 6 Trie, radix trie: Efficient string search
  • 7 Use case: LRU cache
  • Part 2. Multidimensional queries
  • 8 Nearest neighbors search
  • 9 K-d trees: Multidimensional data indexing
  • 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval
  • 11 Applications of nearest neighbor search
  • 12 Clustering
  • 13 Parallel clustering: MapReduce and canopy clustering
  • Part 3. Planar graphs and minimum crossing number
  • 14 An introduction to graphs: Finding paths of minimum distance
  • 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections
  • 16 Gradient descent: Optimization problems (not just) on graphs
  • 17 Simulated annealing: Optimization beyond local minima
  • 18 Genetic algorithms: Biologically inspired, fast-converging optimization
  • Appendix A. A quick guide to pseudo-code
  • Appendix B. Big-O notation
  • Appendix C. Core data structures
  • Appendix D. Containers as priority queues
  • Appendix E. Recursion
  • Appendix F. Classification problems and randomnized algorithm metrics
  • Index.