Advanced forecasting with Python : with state-of-the-art-models including LSTMs, Facebook's Prophet, and Amazon's DeepAR /
Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Korstanje, Joos |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Apress,
2021.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Forecasting time series data with Prophet : build, improve, and optimize time series forecasting models using Meta's advanced forecasting tool /
por: Rafferty, Greg
Publicado: (2023) -
Machine Learning for Time-Series with Python Forecast, Predict, and Detect Anomalies with State-Of-the-art Machine Learning Methods.
por: Auffarth, Ben
Publicado: (2021) -
Time Series Algorithms Recipes : Implement Machine Learning and Deep Learning Techniques with Python /
por: Kulkarni, Akshay R., et al.
Publicado: (2023) -
Time series forecasting in Python /
por: Peixeiro, Marco
Publicado: (2022) -
Time series forecasting in Python /
por: Peixeiro, Marco
Publicado: (2022)