Cargando…

Advanced forecasting with Python : with state-of-the-art-models including LSTMs, Facebook's Prophet, and Amazon's DeepAR /

Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Korstanje, Joos
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Apress, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1259625412
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210711s2021 xxu o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d OCLCF  |d DCT  |d N$T  |d UKAHL  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1266809933 
020 |a 9781484271506  |q (electronic bk.) 
020 |a 1484271505  |q (electronic bk.) 
020 |z 1484271491 
020 |z 9781484271490 
024 7 |a 10.1007/978-1-4842-7150-6  |2 doi 
029 1 |a AU@  |b 000069470085 
029 1 |a AU@  |b 000069686360 
035 |a (OCoLC)1259625412  |z (OCoLC)1266809933 
037 |b Springer 
050 4 |a QA76.73.P98 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Korstanje, Joos. 
245 1 0 |a Advanced forecasting with Python :  |b with state-of-the-art-models including LSTMs, Facebook's Prophet, and Amazon's DeepAR /  |c Joos Korstanje. 
260 |a [Place of publication not identified] :  |b Apress,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Chapter 1: Models for Forecasting -- Chapter 2: Model Evaluation for Forecasting -- Chapter 3: The AR Model -- Chapter 4: The MA model -- Chapter 5: The ARMA model -- Chapter 6: The ARIMA model -- Chapter 7: The SARIMA Model -- Chapter 8: The VAR model -- Chapter 9: The Bayesian VAR model -- Chapter 10: The Linear Regression model -- Chapter 11: The Decision Tree model -- Chapter 12: The k-Nearest Neighbors VAR model -- Chapter 13: The Random Forest Model -- Chapter 14: The XGBoost model -- Chapter 15: The Neural Network model -- Chapter 16: Recurrent Neural Networks -- Chapter 17: LSTMs -- Chapter 18: Facebook's Prophet model -- Chapter 19: Amazon's DeepAR Model -- Chapter 20: Deep State Space Models -- Chapter 21: Model selection. 
520 |a Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model. Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, a mathematical transcription of the idea, and Python code that applies the model to an example data set. Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. You will: Carry out forecasting with Python Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing Select the right model for the right use case. 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed July 16, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Time-series analysis  |x Data processing. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Série chronologique  |x Informatique. 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
776 0 8 |i Print version:  |z 1484271491  |z 9781484271490  |w (OCoLC)1250306047 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484271506/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39129264 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6676413 
938 |a EBSCOhost  |b EBSC  |n 2961640 
938 |a YBP Library Services  |b YANK  |n 302323933 
994 |a 92  |b IZTAP