Cargando…

<>.

精通特征工程 /
Detalles Bibliográficos
Autores principales: Zheng, Alice (Autor), Casari, Amanda (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Chino
Publicado: Posts & Telecom Press, 2019.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000nam a2200000Ma 4500
001 OR_on1258271319
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn |||
008 210701s2019 xx go 0o0 0 chi d
040 |a TOH  |b eng  |c TOH  |d RDF  |d OCLCO  |d VT2  |d STF  |d UPM  |d TOH  |d OCLCQ 
066 |c $1 
020 |a 9787115509680 
020 |a 7115509689 
024 8 |a 9787115509680 
029 1 |a AU@  |b 000071519287 
035 |a (OCoLC)1258271319 
049 |a UAMI 
100 1 |a Zheng, Alice,  |e author. 
245 1 0 |6 880-99  |a <>. 
250 |a 1st edition. 
264 1 |b Posts & Telecom Press,  |c 2019. 
300 |a 1 online resource (172 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 9.08 
542 |f Copyright ©Alice Zheng and Amanda Casari  |g 2018 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed April 1, 2019). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Casari, Amanda,  |e author. 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9787115509680/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
880 1 0 |6 245-99  |a 精通特征工程 /  |c Zheng, Alice. 
880 |6 520-00  |a 特征工程是机器学习流程中至关重要的一个环节,然而专门讨论这个话题的著作却寥寥无几。本书旨在填补这一空白,着重阐明特征工程的基本原则,介绍大量特征工程技术,教你从原始数据中提取出正确的特征并将其转换为适合机器学习模型的格式,从而轻松构建模型,增强机器学习算法的效果。 然而,本书并非单纯地讲述特征工程的基本原则,而是通过大量示例和练习将重点放在了实际应用上。每一章都集中研究一个数据问题:如何表示文本数据或图像数据,如何为自动生成的特征降低维度,何时以及如何对特征进行标准化,等等。最后一章通过一个完整的例子演示了多种特征工程技术的实际应用。书中所有代码示例均是用Python编写的,涉及NumPy、Pandas、scikit-learn和Matplotlib等程序包。 数值型数据的特征工程:过滤、分箱、缩放、对数变换和指数变换 自然文本技术:词袋、n元词与短语检测 基于频率的过滤和特征缩放 分类变量编码技术:特征散列化与分箱计数 使用主成分分析的基于模型的特征工程 模型堆叠与k-均值特征化 图像特征提取:人工提取与深度学习 
994 |a 92  |b IZTAP