Cargando…

Spotlight on Data : Improving Uber's Customer Support with Natural Language Processing and Deep Learning with Piero Molino /

For a company looking to provide delightful user experiences, it's critical to resolve customer issues quickly and efficiently. Uber has implemented COTA, a system that helps representatives provide the best experience to customers by suggesting the best solutions. COTA improves the speed and r...

Descripción completa

Detalles Bibliográficos
Autor principal: Molino, Piero (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2019.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000Ma 4500
001 OR_on1256361498
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
008 161019s2019 xx 057 o vleng d
040 |a UAB  |b eng  |c UAB  |d AU@  |d STF  |d TOH  |d NZCPL  |d OCLCF  |d OCLCO 
019 |a 1129470899  |a 1191055083  |a 1193322833  |a 1224591076  |a 1232117511  |a 1305865491 
020 |z 0636920344018 
024 8 |a 0636920344032 
029 1 |a AU@  |b 000066261600 
035 |a (OCoLC)1256361498  |z (OCoLC)1129470899  |z (OCoLC)1191055083  |z (OCoLC)1193322833  |z (OCoLC)1224591076  |z (OCoLC)1232117511  |z (OCoLC)1305865491 
049 |a UAMI 
100 1 |a Molino, Piero,  |e author. 
245 1 0 |a Spotlight on Data :  |b Improving Uber's Customer Support with Natural Language Processing and Deep Learning with Piero Molino /  |c Molino, Piero. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2019. 
300 |a 1 online resource (1 video file, approximately 57 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
520 |a For a company looking to provide delightful user experiences, it's critical to resolve customer issues quickly and efficiently. Uber has implemented COTA, a system that helps representatives provide the best experience to customers by suggesting the best solutions. COTA improves the speed and reliability of customer support through automated ticket classification and answer selection for support representatives. By improving speed and reliability, COTA also helps reduce customer support operations costs. In this Spotlight on Data, find out how Uber leverages large-scale data and deep learning models for operational efficiency and improved user experience. Piero Molino details how Uber has reduced issue resolution time by 20% while maintaining levels of customer satisfaction, using NLP, deep learning, A/B testing, and productionized models. Recorded on July 2, 2019. See the original event page for resources for further learning. Find future live events to attend or watch recordings of other past events . O'Reilly Spotlight explores emerging business and technology topics and ideas through a series of one-hour interactive events. In live conversations, participants share their questions and ideas while hearing the experts' unique perspectives, insights, fears, and predictions for the future. In every edition of Spotlight on Data, you'll learn about, discuss, and debate the tools, techniques, questions, and quandaries in the world of data. You'll discover how successful companies leverage data effectively and how you can follow their lead to transform your organization and prepare for the Next Economy. 
588 |a Online resource; Title from title screen (viewed October 17, 2019). 
542 |f Copyright © O'Reilly Media, Inc. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Internet videos. 
650 0 |a Streaming video. 
650 6 |a Vidéos sur Internet. 
650 6 |a Vidéo en continu. 
650 7 |a streaming video.  |2 aat 
650 7 |a Internet videos.  |2 fast  |0 (OCoLC)fst01742417 
650 7 |a Streaming video.  |2 fast  |0 (OCoLC)fst01738354 
655 4 |a Electronic videos. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920344032/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP