Cargando…

Reinforcement Learning with Python Explained for Beginners /

Learn reinforcement learning from scratch. About This Video Gain an understanding of all theoretical concepts related to reinforcement learning Master learning models such as model-free learning, Q-learning, temporal difference learning Model the uncertainty of the environment, environment stochasti...

Descripción completa

Detalles Bibliográficos
Autor principal: OU, AI (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1253364820
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cn|||||||||
007 vz czazuu
008 150421s2021 xx --- o vleng d
040 |a TOH  |b eng  |c TOH  |d AU@  |d OCLCO  |d NZCPL  |d OCLCF  |d OCLCO  |d OCLCQ 
019 |a 1251830775  |a 1260704125  |a 1305904450 
020 |a 9781801072274 
020 |a 1801072272 
024 8 |a 9781801072274 
029 1 |a AU@  |b 000069137211 
035 |a (OCoLC)1253364820  |z (OCoLC)1251830775  |z (OCoLC)1260704125  |z (OCoLC)1305904450 
049 |a UAMI 
100 1 |a OU, AI,  |e author. 
245 1 0 |a Reinforcement Learning with Python Explained for Beginners /  |c OU, AI. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2021. 
300 |a 1 online resource (1 video file, approximately 9 hr., 7 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
365 |b 134.99 
520 |a Learn reinforcement learning from scratch. About This Video Gain an understanding of all theoretical concepts related to reinforcement learning Master learning models such as model-free learning, Q-learning, temporal difference learning Model the uncertainty of the environment, environment stochastic policies, and environment value functions In Detail Although introduced academically decades ago, the recent developments in the field of reinforcement learning have been phenomenal. Domains such as self-driving cars, natural language processing, healthcare industry, online recommender systems, and so on have already seen how RL-based AI agents can bring tremendous gains. This course will help you get started with reinforcement learning first by establishing the motivation for this field and then covering all the essential topics, such as Markov Decision Processes, policy and rewards, model-free learning, temporal difference learning, and so on. Each topic is accompanied by exercises and complementing analysis to help you gain practical and tangible coding skills. By the end of this course, not only will you have gained the necessary understanding to implement RL in your projects but also implemented an actual Frozenlake project using the OpenAI Gym toolkit. 
542 |f Packt Publishing  |g 2021 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title screen (viewed February 26, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781801072274/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP