Cargando…

Implementing machine learning for finance : a systematic approach to predictive risk and performance analysis for investment portfolios /

Bring together machine learning ()ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science proced...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nokeri, Tshepo Chris
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Apress, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1253354666
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210601s2021 xxu o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d EBLCP  |d GW5XE  |d OCLCO  |d OCLCF  |d VT2  |d N$T  |d UKAHL  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1255225408  |a 1262680137  |a 1262687774 
020 |a 9781484271100  |q (electronic bk.) 
020 |a 1484271106  |q (electronic bk.) 
020 |a 9781484271117  |q (print) 
020 |a 1484271114 
020 |z 1484271092 
020 |z 9781484271094 
024 7 |a 10.1007/978-1-4842-7110-0  |2 doi 
029 1 |a AU@  |b 000069320163 
029 1 |a AU@  |b 000069347156 
035 |a (OCoLC)1253354666  |z (OCoLC)1255225408  |z (OCoLC)1262680137  |z (OCoLC)1262687774 
050 4 |a Q325.5 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Nokeri, Tshepo Chris. 
245 1 0 |a Implementing machine learning for finance :  |b a systematic approach to predictive risk and performance analysis for investment portfolios /  |c Tshepo Chris Nokeri. 
260 |a [Place of publication not identified] :  |b Apress,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Chapter 1: Introduction to Financial Markets and Algorithmic Trading -- Chapter 2: Forecasting Using ARIMA, SARIMA, and the Additive Model -- Chapter 3: Univariate Time Series Using Recurrent Neural Nets -- Chapter 4: Discover Market Regimes -- Chapter 5: Stock Clustering -- Chapter 6: Future Price Prediction Using Linear Regression -- Chapter 7: Stock Market Simulation -- Chapter 8: Market Trend Classification Using ML and DL -- Chapter 9: Investment Portfolio and Risk Analysis. 
500 |a Includes index. 
520 |a Bring together machine learning ()ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures. The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios. By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems. You will: Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management Know the concepts of feature engineering, data visualization, and hyperparameter optimization Design, build, and test supervised and unsupervised ML and DL models Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed June 14, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Investments  |x Data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Investissements  |x Informatique. 
650 7 |a Investments  |x Data processing  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |z 1484271092  |z 9781484271094  |w (OCoLC)1245659292 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484271100/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39101910 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6631273 
938 |a EBSCOhost  |b EBSC  |n 2938825 
938 |a YBP Library Services  |b YANK  |n 17469600 
994 |a 92  |b IZTAP