Cargando…

Deep learning with Python : learn best practices of deep learning models with PyTorch /

Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ketkar, Nikhil (Autor), Moolayil, Jojo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley, CA] : Apress, [2021]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1246247219
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 210415s2021 caua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCO  |d EBLCP  |d OCLCF  |d UKAHL  |d AFU  |d OCLCO  |d OCLCQ  |d COM  |d OCLCQ 
020 |a 9781484253649  |q (electronic bk.) 
020 |a 1484253647  |q (electronic bk.) 
020 |z 9781484253632 
024 7 |a 10.1007/978-1-4842-5364-9  |2 doi 
029 1 |a AU@  |b 000069095398 
035 |a (OCoLC)1246247219 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Ketkar, Nikhil,  |e author. 
245 1 0 |a Deep learning with Python :  |b learn best practices of deep learning models with PyTorch /  |c Nikhil Ketkar, Jojo Moolayil. 
250 |a Second edition. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2021] 
300 |a 1 online resource (xvii, 306 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook's Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. You will: Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models. 
505 0 |a Chapter 1 -- Introduction Deep Learning -- Chapter 2 -- Introduction to PyTorch -- Chapter 3- Feed Forward Networks -- Chapter 4 -- Automatic Differentiation in Deep Learning -- Chapter 5 -- Training Deep Neural Networks -- Chapter 6 -- Convolutional Neural Networks -- Chapter 7 -- Recurrent Neural Networks -- Chapter 8 -- Recent advances in Deep Learning. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 15, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Moolayil, Jojo,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484253649/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39538416 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6543728 
994 |a 92  |b IZTAP