Cargando…

Practical machine learning for streaming data with Python : design, develop, and validate online learning models /

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insigh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Putatunda, Sayan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1245927213
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210413s2021 cau o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d OCLCO  |d EBLCP  |d OCLCF  |d N$T  |d K6U  |d UKAHL  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ  |d OCLCO 
020 |a 9781484268674  |q (electronic bk.) 
020 |a 1484268679  |q (electronic bk.) 
020 |z 9781484268667 
020 |z 1484268660 
024 7 |a 10.1007/978-1-4842-6867-4  |2 doi 
029 1 |a AU@  |b 000069095993 
035 |a (OCoLC)1245927213 
050 4 |a Q325.5 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Putatunda, Sayan,  |e author. 
245 1 0 |a Practical machine learning for streaming data with Python :  |b design, develop, and validate online learning models /  |c Sayan Putatunda. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow. Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more. You will: Understand machine learning with streaming data concepts Review incremental and online learning Develop models for detecting concept drift Explore techniques for classification, regression, and ensemble learning in streaming data contexts Apply best practices for debugging and validating machine learning models in streaming data context Get introduced to other open-source frameworks for handling streaming data. 
505 0 |a Chapter 1: An Introduction to Streaming Data -- Chapter 2: Concept Drift Detection in Data Streams -- Chapter 3: Supervised Learning for Streaming Data -- Chapter 4: Unsupervised Learning and Other Tools for Data Stream Mining. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 16, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |z 1484268660  |z 9781484268667  |w (OCoLC)1227382292 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484268674/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39387512 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6543741 
938 |a EBSCOhost  |b EBSC  |n 2916321 
938 |a YBP Library Services  |b YANK  |n 17335417 
994 |a 92  |b IZTAP