Cargando…

Beginning machine learning in the browser : quick-start guide to gait analysis with JavaScript and TensorFlow.js /

Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a sim...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Suryadevara, Nagender Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1245672692
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---aucuu
008 210410s2021 cau ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d YDX  |d OCLCO  |d EBLCP  |d OCLCF  |d N$T  |d UKAHL  |d K6U  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ 
019 |a 1244805377 
020 |a 9781484268438  |q (electronic bk.) 
020 |a 1484268431  |q (electronic bk.) 
020 |z 1484268423 
020 |z 9781484268421 
024 7 |a 10.1007/978-1-4842-6843-8  |2 doi 
029 1 |a AU@  |b 000069095538 
035 |a (OCoLC)1245672692  |z (OCoLC)1244805377 
050 4 |a Q325.5 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Suryadevara, Nagender Kumar. 
245 1 0 |a Beginning machine learning in the browser :  |b quick-start guide to gait analysis with JavaScript and TensorFlow.js /  |c Nagender Kumar Suryadevara. 
260 |a Berkeley, CA :  |b Apress,  |c 2021. 
300 |a 1 online resource (193 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Preface -- Chapter 1: Web Development -- Machine Learning Overview -- Web Communication -- Organizing the Web with HTML -- Web Development Using IDEs/Editors -- Building Blocks of Web Development -- HTML and CSS Programming -- Dynamic HTML -- Cascading Style Sheets -- Inline Style Sheets -- Embedded Style Sheets -- External Style Sheets -- JavaScript Basics -- Including the JavaScript -- Where to Insert JS Scripts -- JavaScript for an Event-Driven Process -- Document Object Model Manipulation 
505 8 |a Introduction to jQuery -- Summary -- References -- Chapter 2: Browser-Based Data Processing -- JavaScript Libraries and API for ML on the Web -- W3C WebML CG (Community Group) -- Manipulating HTML Elements Using JS Libraries -- p5.js -- Drawing Graphical Objects -- Manipulating DOM Objects -- DOM onEvent(mousePressed) Handling -- Multiple DOM Objects onEvent Handling -- HTML Interactive Elements -- Interaction with HTML and CSS Elements -- Hierarchical (Parent-Child) Interaction of DOM Elements -- Accessing DOM Parent-Child Elements Using Variables 
505 8 |a Graphics and Interactive Processing in the Browser Using p5.js -- Interactive Graphics Application -- Object Instance, Storage of Multiple Values, and Loop Through Object -- Getting Started with Machine Learning in the Browser Using ml5.js and p5.js -- Design, Develop, and Execute Programs Locally -- Method 1: Using Python -- HTTP Server -- Method 2: Using Visual Studio Code Editor with Node.js Live Server -- Summary -- References -- Chapter 3: Human Pose Estimation in the Browser -- Human Pose at a Glance -- PoseNet vs. OpenPose -- Human Pose Estimation Using Neural Networks 
505 8 |a DeepPose: Human Pose Estimation via Deep Neural Networks -- Efficient Object Localization Using Convolutional Networks -- Convolutional Pose Machines -- Human Pose Estimation with Iterative Error Feedback -- Stacked Hourglass Networks for Human Pose Estimation -- Simple Baselines for Human Pose Estimation and Tracking -- Deep High-Resolution Representation Learning for Human Pose Estimation -- Using the ml5.js:posenet() Method -- Input, Output, and Data Structure of the PoseNet Model -- Input -- Output -- on() Function -- Summary -- References -- Chapter 4: Human Pose Classification 
505 8 |a Need for Human Pose Estimation in the Browser -- ML Classification Techniques in the Browser -- ML Using TensorFlow.js -- Changing Flat File Data into TensorFlow.js Format -- Artificial Neural Network Model in the Browser Using TensorFlow.js -- Trivial Neural Network -- Example 1: Neural Network Model in TensorFlow.js -- Example 2: A Simple ANN to Realize the "Not AND" (NAND) Boolean Operation -- Human Pose Classification Using PoseNet -- Setting Up a PoseNet Project -- Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File) 
500 |a Step 2: Single-Person Pose Estimation Using a Browser Webcam. 
504 |a Includes bibliographical references and index. 
520 |a Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas. Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized. After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, youll learn about the classification of normal and abnormal Gait patterns. With Beginning Machine Learning in the Browser, youll be on your way to becoming an experienced Machine Learning developer. You will: Work with ML models, calculations, and information gathering Implement TensorFlow.js libraries for ML models Perform Human Gait Analysis using ML techniques in the browser. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Suryadevara, Nagender Kumar.  |t Beginning Machine Learning in the Browser.  |d Berkeley, CA : Apress L.P., ©2021  |z 9781484268421 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484268438/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38627748 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6533448 
938 |a EBSCOhost  |b EBSC  |n 2903493 
938 |a YBP Library Services  |b YANK  |n 302032640 
994 |a 92  |b IZTAP