Cargando…

Cleaning data for effective data science : doing the other 80% of the work with Python, R, and command-line tools /

A comprehensive guide for data scientists to master effective data cleaning tools and techniques Key Features Master data cleaning techniques in a language-agnostic manner Learn from intriguing hands-on examples from numerous domains, such as biology, weather data, demographics, physics, time series...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mertz, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Packt Publishing Limited, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Table of ContentsData Ingestion - Tabular FormatsData Ingestion
  • Hierarchical FormatsData Ingestion
  • Repurposing Data SourcesThe Vicissitudes of Error
  • Anomaly DetectionThe Vicissitudes of Error
  • Data QualityRectification and Creation
  • Value ImputationRectification and Creation
  • Feature EngineeringAncillary Matters
  • Closure/Glossary.