Cargando…

Deep Learning : Recurrent Neural Networks with Python /

One-stop shop for understanding and implementing recurrent neural networks with Python About This Video Understand and apply basics fundamentals of recurrent neural networks Implement RNNs and related architectures on real-world datasets Train RNNs for real-world applications-automatic book writer a...

Descripción completa

Detalles Bibliográficos
Autor principal: OÜ, AI (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Packt Publishing, 2021.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1244275298
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cn|||||||||
007 vz czazuu
008 100321s2021 xx --- o vleng d
040 |a TOH  |b eng  |c TOH  |d AU@  |d OCLCO  |d NZCPL  |d OCLCF  |d OCLCO  |d OCLCQ 
019 |a 1242346245  |a 1260704680  |a 1305856141 
020 |a 9781801079167 
020 |a 1801079161 
024 8 |a 9781801079167 
029 1 |a AU@  |b 000068846502 
035 |a (OCoLC)1244275298  |z (OCoLC)1242346245  |z (OCoLC)1260704680  |z (OCoLC)1305856141 
049 |a UAMI 
100 1 |a OÜ, AI,  |e author. 
245 1 0 |a Deep Learning :  |b Recurrent Neural Networks with Python /  |c OÜ, AI. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2021. 
300 |a 1 online resource (1 video file, approximately 11 hr., 10 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
365 |b 134.99 
520 |a One-stop shop for understanding and implementing recurrent neural networks with Python About This Video Understand and apply basics fundamentals of recurrent neural networks Implement RNNs and related architectures on real-world datasets Train RNNs for real-world applications-automatic book writer and stock price prediction In Detail With the exponential growth of user-generated data, there is a strong need to move beyond standard neural networks in order to perform tasks such as classification and prediction. Here, architectures such as RNNs, Gated Recurrent Units (GRUs), and Long Short Term Memory (LSTM) are the go-to options. Hence, for any deep learning engineer, mastering RNNs is a top priority. This course begins with the basics and will gradually equip you with not only the theoretical know-how but also the practical skills required to successfully build, train, and implement RNNs. This course contains several exercises on topics such as gradient descents in RNNs, GRUs, LSTM, and so on. This course also introduces you to implementing RNNs using TensorFlow. The course culminates in creating two exciting and realistic projects: creating an automatic book writer and a stock price prediction application. By the end of this course, you will be equipped with all the skills required to confidently use and implement RNNs in your applications. 
542 |f Packt Publishing  |g 2021 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title screen (viewed February 26, 2021). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781801079167/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP