|
|
|
|
LEADER |
00000cgm a22000007a 4500 |
001 |
OR_on1244275298 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o c |
007 |
cr cn||||||||| |
007 |
vz czazuu |
008 |
100321s2021 xx --- o vleng d |
040 |
|
|
|a TOH
|b eng
|c TOH
|d AU@
|d OCLCO
|d NZCPL
|d OCLCF
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1242346245
|a 1260704680
|a 1305856141
|
020 |
|
|
|a 9781801079167
|
020 |
|
|
|a 1801079161
|
024 |
8 |
|
|a 9781801079167
|
029 |
1 |
|
|a AU@
|b 000068846502
|
035 |
|
|
|a (OCoLC)1244275298
|z (OCoLC)1242346245
|z (OCoLC)1260704680
|z (OCoLC)1305856141
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a OÜ, AI,
|e author.
|
245 |
1 |
0 |
|a Deep Learning :
|b Recurrent Neural Networks with Python /
|c OÜ, AI.
|
250 |
|
|
|a 1st edition.
|
264 |
|
1 |
|b Packt Publishing,
|c 2021.
|
300 |
|
|
|a 1 online resource (1 video file, approximately 11 hr., 10 min.)
|
336 |
|
|
|a two-dimensional moving image
|b tdi
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a video file
|
365 |
|
|
|b 134.99
|
520 |
|
|
|a One-stop shop for understanding and implementing recurrent neural networks with Python About This Video Understand and apply basics fundamentals of recurrent neural networks Implement RNNs and related architectures on real-world datasets Train RNNs for real-world applications-automatic book writer and stock price prediction In Detail With the exponential growth of user-generated data, there is a strong need to move beyond standard neural networks in order to perform tasks such as classification and prediction. Here, architectures such as RNNs, Gated Recurrent Units (GRUs), and Long Short Term Memory (LSTM) are the go-to options. Hence, for any deep learning engineer, mastering RNNs is a top priority. This course begins with the basics and will gradually equip you with not only the theoretical know-how but also the practical skills required to successfully build, train, and implement RNNs. This course contains several exercises on topics such as gradient descents in RNNs, GRUs, LSTM, and so on. This course also introduces you to implementing RNNs using TensorFlow. The course culminates in creating two exciting and realistic projects: creating an automatic book writer and a stock price prediction application. By the end of this course, you will be equipped with all the skills required to confidently use and implement RNNs in your applications.
|
542 |
|
|
|f Packt Publishing
|g 2021
|
550 |
|
|
|a Made available through: Safari, an O'Reilly Media Company.
|
588 |
0 |
|
|a Online resource; Title from title screen (viewed February 26, 2021).
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
710 |
2 |
|
|a O'Reilly for Higher Education (Firm),
|e distributor.
|
710 |
2 |
|
|a Safari, an O'Reilly Media Company.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/videos/~/9781801079167/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
936 |
|
|
|a BATCHLOAD
|
994 |
|
|
|a 92
|b IZTAP
|