Information spread in a social media age : modeling and control.
The rise of social networks and social media has led to a massive shift in the ways information is dispersed. Platforms like Twitter and Facebook allow people to more easily connect as a community, but they can also be avenues for misinformation, fake news, and polarization. The need to examine, mod...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
CRC Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Contents
- Foreword
- Preface
- Authors
- Acknowledgments
- List of Figures
- List of Tables
- List of Codes
- Symbols
- 1. Introduction
- 1.1. Expressions of Information
- 1.2. Why Information Spread Matters?
- 1.3. Modern Information Spread Scenarios
- 1.3.1. Global Communication During a Pandemic
- 1.3.2. Governments and Mass Panic
- 1.3.3. Shopping and Advertising
- 1.3.4. Social or Political Campaigning
- 1.3.5. Misinformation, Disinformation, and Fake News
- 1.4. Controllable Information Spread
- 1.5. How to Read This Book
- 1.6. Exercises
- I. Understanding Social Networking Systems
- 2. Social Media in Popular Culture
- 2.1. The Topology of Social Media
- 2.2. Social Networking Sites
- 2.2.1. Twitter
- 2.2.2. Facebook
- 2.2.3. LinkedIn
- 2.3. Content Sharing Sites
- 2.4. Discussion Forums
- 2.5. News and Blogs
- 2.6. Shopping and Reviews
- 2.7. Games and Music
- 2.8. Hybrid Social Media
- 2.8.1. Internet Memes
- 2.9. Exercises
- 3. Social Theory and Networks
- 3.1. Philosophy, Science, and Information Spread
- 3.1.1. The Ancient World
- 3.1.2. The Medieval World
- 3.1.3. The Early Modern World
- 3.1.4. The Contemporary World
- 3.2. Social Theory and Social Networks
- 3.3. Social Exchange Theory
- 3.4. Exercises
- 4. Social Network Relationships and Structures
- 4.1. Social Network Relationship Overview
- 4.2. Core Social Network Relationships
- 4.2.1. Symmetry
- 4.2.2. Directionality
- 4.2.3. Intermediary Relationships
- 4.2.4. Complex Networks
- 4.3. Homophily and Filter Bubbles
- 4.4. Dyadic Relationships and Reciprocity
- 4.5. Triads and Balanced Relationships
- 4.6. Social Network Analysis Software
- 4.7. Exercises
- 5. Social Network Analysis
- 5.1. Density and Structural Holes
- 5.2. Weak and Strong Ties.
- 5.3. Centrality and Distance
- 5.4. Small World Networks
- 5.5. Clusters, Cohesion, and Polarization
- 5.6. The Adjacency Matrix
- 5.6.1. Example: A Fencing Club Sociogram
- 5.7. Exercises
- II. Macroscopic Modeling and Information Spread
- 6. Modeling Basics
- 6.1. What is a Model?
- 6.2. Models in Decision Making
- 6.3. Standard Models
- 6.4. Models, Assumptions, and Approximations
- 6.5. Mathematical Systems Modeling
- 6.6. Microscopic and Macroscopic Models
- 6.7. Basic Steps to Develop a Mathematical Model
- 6.8. Model Validation
- 6.9. Modeling and the State-Space Representation
- 6.10. Example 1: A Spring-Mass System
- 6.11. Example 2: A Predator-Prey System
- 6.12. Example 3: An RLC Circuit
- 6.13. Example 4: An Epidemic Model
- 6.14. Example 5: Vehicular Tra c Modeling
- 6.14.1. LWR and Greenshields' Models for Tra c
- 6.14.2. ODE Approximation of LWR Model
- 6.15. Exercises
- 7. Epidemiology-Based Models for Information Spread
- 7.1. Epidemiology Models
- 7.1.1. The SIR Disease Spread Model
- 7.1.2. The SEIR Disease Spread Model
- 7.1.3. Herd Immunity in Epidemiology
- 7.1.4. \Flattening the Curve
- 7.1.5. Epidemiology Models as Analog Models
- 7.2. Information Spread Models: Overview and Conventions
- 7.3. The Ignorant-Spreader Model
- 7.4. The Ignorant-Spreader-Ignorant (ISI) Model
- 7.5. The Ignorant-Spreader-Recovered (ISR) Model
- 7.6. Reproductive Number and Herd Immunity
- 7.7. ISR Model for Social Media
- 7.7.1. ISR Model for Social Media with Decay
- 7.8. ISCR Model for Contentious Information Spread
- 7.9. Hybrid ISCR Model
- 7.10. ISSRR Model for Contentious Information
- 7.11. Exercises
- 8. Stochastic Modeling of Information Spread
- 8.1. Brownian Motion
- 8.2. Deterministic and Stochastic Realizations of Processes
- 8.3. Stochastic Modeling Considerations for Social Media Systems.
- 8.4. Stochastic ISI Information Model
- 8.5. Stochastic ISR Information Modeling and Social Media
- 8.6. Exercises
- 9. Social Marketing-Based Models for Information Spread
- 9.1. Vidale-Wolfe Model
- 9.2. Bass Model
- 9.3. Sethi Model
- 9.4. Event-triggered Social Media Chatter Model
- 9.4.1. Socio-Equilibrium Threshold
- 9.4.2. Simulation and Discussion
- 9.5. Exercises
- 10. Case Studies
- 10.1. Selecting Case Studies
- 10.2. Case Study-1: 2017. Mass Shootings
- 10.2.1. Data Acquisition
- 10.2.2. Parameter Estimation
- 10.2.3. Results and Discussion
- 10.3. Case Study-2: The #MeToo Social Movement
- 10.3.1. Data Acquisition
- 10.3.2. Parameter Estimation
- 10.3.3. Results and Discussion
- 10.4. Case Study-3: 2018. Golden Globe Awards
- 10.4.1. Data Acquisition
- 10.4.2. Parameter Estimation
- 10.4.3. Results and Discussion
- 10.5. Case Study-4: Viral Internet Debates
- 10.5.1. Data Acquisition
- 10.5.2. Parameter Estimation
- 10.5.3. Results and Discussion
- 10.6. Exercises
- III. Control Methods For Information Spread
- 11. Control Basics
- 11.1. Introduction
- 11.2. Open-loop and Closed-loop Control Systems
- 11.3. SISO and MIMO Control Systems
- 11.4. Continuous-time and Discrete-time Control Systems
- 11.5. Control System Design
- 12. Control Methods
- 12.1. State Variable Feedback Controller
- 12.1.1. Full-state Feedback Control Design
- 12.1.2. Observer Design
- 12.1.3. Full-state Feedback Controller and Observer
- 12.2. PID Controller
- 12.3. Optimal Control
- 12.3.1. Performance Measure
- 12.3.2. Dynamic Programming and Principle of Optimality
- 12.3.3. Pontryagin's Minimization Principle
- 12.3.4. Illustrative Example
- 12.4. Exercises
- 13. Information Spread and Control
- 13.1. Controlling Socio-technical Systems
- 13.2. The Control Action and Social Media Systems.
- 13.3. Optimal Control and Social Media
- 13.4. Exercises
- 14. Control Application 1: Advertisements and Social Crazes
- 14.1. Scenario Description
- 14.2. Problem Formulation
- 14.3. Dynamic Programming Approach
- 14.4. Pontryagin's Approach
- 14.5. Numerical Solution and Discussion
- 15. Control Application 2: Stopping a Fake News Outbreak
- 15.1. Scenario Description
- 15.2. Problem Formulation
- 15.3. Pontryagin's Approach
- 15.4. Numerical Solution and Discussion
- 16. Concluding Thoughts
- 16.1. What Have We Learned?
- 16.2. But Now What?
- 16.3. The Future and Beyond
- Bibliography
- Index.