Cargando…

MLOps workflow with Github Actions /

Get started with MLOps and Github Actions to package a container with an ONNX model that does live inferencing with a Flask application. By using Azure ML, learn how to download the large ONNX model into the Github Action workflow, package it as a container and then push it to a container registry....

Descripción completa

Detalles Bibliográficos
Autores principales: Deza, Alfredo (Autor, VerfasserIn.), Gift, Noah (Autor, VerfasserIn.)
Autor Corporativo: Safari, an O'Reilly Media Company (Contribuidor, MitwirkendeR.)
Formato: Video
Idioma:Inglés
Publicado: [Erscheinungsort nicht ermittelbar] : Pragmatic AI Solutions, 2021
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Get started with MLOps and Github Actions to package a container with an ONNX model that does live inferencing with a Flask application. By using Azure ML, learn how to download the large ONNX model into the Github Action workflow, package it as a container and then push it to a container registry. For reference use the https://github.com/alfredodeza/flask-roberta repository Topics include: * Create a container that does live inferencing with Flask and the ONNX runtime * Package the model and verify it works locally * Setup a Github Action to authenticate to Azure ML and download a previously registered model * Build the new container as a Github Action, authenticate to Docker Hub or Github Packages * Push the new container to the Github registry or any other registry like Docker Hub.
Notas:Online resource; Title from title screen (viewed March 5, 2021).
Descripción Física:1 online resource (1 video file, circa 1 hr., 6 min.)