Cargando…

AUTOMATED MACHINE LEARNING hyperparameter optimization, neural architecture search, and... algorithm selection with cloud platforms.

Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: MASOOD, DR. ADNAN
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2021.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000M 4500
001 OR_on1239748417
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 210225s2021 xx o 0|| 0 eng d
040 |a YDX  |b eng  |c YDX  |d UKMGB  |d OCLCO  |d OCLCF  |d DST  |d OCLCO  |d OCLCQ  |d N$T  |d IEEEE 
015 |a GBC136522  |2 bnb 
016 7 |a 020124017  |2 Uk 
020 |a 9781800565524  |q (electronic bk.) 
020 |a 1800565526  |q (electronic bk.) 
020 |z 1800567685 
020 |z 9781800567689 
029 1 |a AU@  |b 000068846332 
029 1 |a UKMGB  |b 020124017 
029 1 |a AU@  |b 000069676971 
035 |a (OCoLC)1239748417 
037 |a 9781800565524  |b Packt Publishing 
037 |a 10162130  |b IEEE 
050 4 |a Q325.5  |b .M376 2021 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a MASOOD, DR. ADNAN. 
245 1 0 |a AUTOMATED MACHINE LEARNING  |h [electronic resource] :  |b hyperparameter optimization, neural architecture search, and... algorithm selection with cloud platforms. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2021. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
520 |a Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book DescriptionEvery machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learn Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial. 
505 0 |a Table of Contents A Lap around Automated Machine Learning Automated Machine Learning, Algorithms, and Techniques Automated Machine Learning with Open Source Tools and Libraries Getting Started with Azure Machine Learning Automated Machine Learning with Microsoft Azure Machine Learning with Amazon Web Services Doing Automated Machine Learning with Amazon SageMaker Autopilot Machine Learning with Google Cloud Platform Automated Machine Learning with GCP Cloud AutoML AutoML in the Enterprise. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |z 1800567685  |z 9781800567689  |w (OCoLC)1235870222 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800567689/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 301952392 
938 |a EBSCOhost  |b EBSC  |n 2757915 
994 |a 92  |b IZTAP