|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
OR_on1235969250 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
200619s2020 flua fo 000 0 eng d |
040 |
|
|
|a UKAHL
|b eng
|e rda
|c UKAHL
|d TYFRS
|d OCLCO
|d TYFRS
|d OCLCF
|d UKMGB
|d OCLCO
|d ORMDA
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC079746
|2 bnb
|
016 |
7 |
|
|a 019826272
|2 Uk
|
020 |
|
|
|a 1000168727
|
020 |
|
|
|a 9781003046882
|q (electronic bk.)
|
020 |
|
|
|a 1003046886
|q (electronic bk.)
|
020 |
|
|
|a 9781000168723
|q (electronic bk. : PDF)
|
020 |
|
|
|a 9781000168730
|q (electronic bk. : Mobipocket)
|
020 |
|
|
|a 1000168735
|q (electronic bk. : Mobipocket)
|
020 |
|
|
|a 9781000168747
|q (electronic bk. : EPUB)
|
020 |
|
|
|a 1000168743
|q (electronic bk. : EPUB)
|
020 |
|
|
|z 9780367023454 (hbk.)
|
024 |
8 |
|
|a 10.1201/9781003046882
|2 doi
|
029 |
1 |
|
|a UKMGB
|b 019826272
|
029 |
1 |
|
|a AU@
|b 000068751526
|
029 |
1 |
|
|a AU@
|b 000073550015
|
035 |
|
|
|a (OCoLC)1235969250
|
037 |
|
|
|a 9781003046882
|b Taylor & Francis
|
037 |
|
|
|a 9781000168747
|b O'Reilly Media
|
050 |
|
4 |
|a Q337.3
|
072 |
|
7 |
|a COM
|x 059000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 004000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 007000
|2 bisacsh
|
072 |
|
7 |
|a UMB
|2 bicssc
|
082 |
0 |
4 |
|a 006.3824
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Swarm intelligence algorithms
|c edited by Adam Slowik.
|
264 |
|
1 |
|a Boca Raton :
|b CRC Press,
|c 2020.
|
300 |
|
|
|a 1 online resource
|b illustrations (black and white)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks. Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time. This set comprises two volumes: Swarm Intelligence Algorithms: A Tutorial and Swarm Intelligence Algorithms: Modifications and Applications. The first volume thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work. The second volume describes selected modifications of these algorithms and presents their practical applications. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem.
|
545 |
0 |
|
|a Adam Slowik (IEEE Member 2007; IEEE Senior Member 2012) is an Associate Professor in the Department of Electronics and Computer Science, Koszalin University of Technology. His research interests include soft computing, computational intelligence, and, particularly, bio-inspired optimization algorithms and their engineering applications. He was a recipient of one Best Paper Award (IEEE Conference on Human System Interaction - HSI 2008).
|
505 |
0 |
|
|a <P>Volume 1:</P><P>1 Ant Colony Optimization </P><P>Pushpendra Singh, Nand K. Meena, Jin Yang, and Adam Slowik</P><P>2 Artificial Bee Colony Algorithm</P><P>Bahriye Akay and Dervis Karaboga</P><P>3 Bacterial Foraging Optimization </P><P>Sonam Parashar, Nand K. Meena, Jin Yang, and Neeraj Kanwar</P><P>4 Bat Algorithm </P><P>Xin-She Yang and Adam Slowik</P><P>5 Cat Swarm Optimization </P><P>Dorin Moldovan, Viorica Chifu, Ioan Salomie, and Adam Slowik</P><P>6 Chicken Swarm Optimization</P><P>Dorin Moldovan and Adam Slowik</P><P>7 Cockroach Swarm Optimization</P><P>Joanna Kwiecien</P><P>8 Crow Search Algorithm</P><P>Adam Slowik and Dorin Moldovan</P><P>9 Cuckoo Search Algorithm </P><P>Xin-She Yang and Adam Slowik</P><P>10 Dynamic Virtual Bats Algorithm</P><P>Ali Osman Topal</P><P>11 Dispersive Flies Optimisation: A Tutorial </P><P>Mohammad Majid al-Rifaie</P><P>12 Elephant Herding Optimization </P><P>Nand K. Meena, Jin Yang, and Adam Slowik</P><P>13 Firey Algorithm </P><P>Xin-She Yang and Adam Slowik</P><P>14 Glowworm Swarm Optimization -- A Tutorial</P><P>Krishnanand Kaipa and Debasish Ghose</P><P>15 Grasshopper Optimization Algorithm</P><P>Szymon Lukasik</P><P>16 Grey Wolf Optimizer </P><P>Ahmed F. Ali and Mohamed A. Tawhid</P><P>17 Hunting Search Algorithm </P><P>Ferhat Erdal and Osman Tunca</P><P>18 Krill Herd Algorithm </P><P>Ali R. Kashani, Charles V. Camp, Hamed Tohidi, and Adam Slowik</P><P>19 Monarch Butterfly Optimization </P><P>Pushpendra Singh, Nand K. Meena, Jin Yang, and Adam Slowik</P><P>20 Particle Swarm Optimization</P><P>Adam Slowik</P><P>21 Salp Swarm Optimization: Tutorial</P><P>Essam H. Houssein, Ibrahim E. Mohamed , and Aboul Ella Hassanien</P><P>22 Social Spider Optimization</P><P>Ahmed F. Ali and Mohamed A. Tawhid</P><P>23 Stochastic Diffusion Search: A Tutorial </P><P>Mohammad Majid al-Rifaie and J. Mark Bishop</P><P>24 Whale Optimization Algorithm</P><P>Ali R. Kashani, Charles V. Camp, Moein Armanfar, and Adam Slowik</P><P></P><P>Volume 2:</P><P>1 Ant Colony Optimization, Modifications, and Application </P><P>Pushpendra Singh, Nand K. Meena, and Jin Yang</P><P>2 Artificial Bee Colony -- Modifications and An Application to Software Requirements Selection </P><P>Bahriye Akay</P><P>3 Modified Bacterial Forging Optimization and Application </P><P>Neeraj Kanwar, Nand K. Meena, Jin Yang, and Sonam Parashar</P><P>4 Bat Algorithm -- Modifications and Application </P><P>Neeraj Kanwar, Nand K. Meena, and Jin Yang</P><P>5 Cat Swarm Optimization -- Modifications and Application </P><P>Dorin Moldovan, Adam Slowik, Viorica Chifu, and Ioan Salomie</P><P>6 Chicken Swarm Optimization -- Modifications and Application</P><P>Dorin Moldovan and Adam Slowik</P><P>7 Cockroach Swarm Optimization -- Modifications and Application</P><P>Joanna Kwiecien</P><P>8 Crow Search Algorithm -- Modifications and Application</P><P>Adam Slowik and Dorin Moldovan</P><P>9 Cuckoo Search Optimisation -- Modifications and Application</P><P>Dhanraj Chitara, Nand K. Meena, and Jin Yang</P><P>10 Improved Dynamic Virtual Bats Algorithm for Identifying a Suspension System Parameters </P><P>Ali Osman Topal</P><P>11 Dispersive Flies Optimisation: Modifications and Application</P><P>Mohammad Majid al-Rifaie, Hooman Oroojeni M. J., and Mihalis Nicolaou</P><P>12 Improved Elephant Herding Optimization and Application </P><P>Nand K. Meena and Jin Yang</P><P>13 Firey Algorithm: Variants and Applications</P><P>Xin-She Yang</P><P>14 Glowworm Swarm Optimization -- Modifications and Applications</P><P>Krishnanand Kaipa and Debasish Ghose</P><P>15 Grasshopper Optimization Algorithm -- Modifications and Applications</P><P>Szymon Lukasik</P><P>16 Grey wolf optimizer -- Modifications and Applications</P><P>Ahmed F. Ali and Mohamed A. Tawhid</P><P>17 Hunting Search Optimization Modification and Application</P><P>Ferhat Erdal, Osman Tunca, and Erkan Dogan</P><P>18 Krill Herd Algorithm -- Modifications and Applications</P><P>Ali R. Kashani, Charles V. Camp, Hamed Tohidi, and Adam Slowik</P><P>19 Modified Monarch Butterfly Optimization and Real-life Applications</P><P>Pushpendra Singh, Nand K. Meena, and Jin Yang</P><P>20 Particle Swarm Optimization Modifications and Application</P><P>Adam Slowik</P><P>21 Salp Swarm Algorithm: Modifications and Application</P><P>Essam H. Houssein, Ibrahim E. Mohamed , and Aboul Ella Hassanien</P><P>22 Social Spider Optimization -- Modifications and Applications</P><P>Ahmed F. Ali and Mohamed A. Tawhid</P><P>23 Stochastic Diffusion Search: Modifications and Application</P><P>Mohammad Majid al-Rifaie and J. Mark Bishop</P><P>24 Whale Optimization Algorithm -- Modifications and Applications</P><P>Ali R. Kashani, Charles V. Camp, Moein Armanfar, and Adam Slowik</P>
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Swarm intelligence.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
2 |
|a Algorithms
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a COMPUTERS / Computer Engineering
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS / Arithmetic
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY / Electricity
|2 bisacsh
|
650 |
|
7 |
|a Algorithms
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
650 |
|
7 |
|a Swarm intelligence
|2 fast
|
700 |
1 |
|
|a Slowik, Adam,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 9780367023454
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781000168747/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37356996
|
994 |
|
|
|a 92
|b IZTAP
|