Cargando…

Modern Computer Vision with PyTorch /

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key Features Implement solutions to 50 real-world computer vision applications using PyTorch Understand the theory and working mechanisms of neural n...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayyadevara, V (Autor), Reddy, Yeshwanth (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2020.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_on1235779331
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 061220s2020 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d OCLCQ  |d OCLCO 
020 |a 1839213477 
020 |a 9781839213472 
035 |a (OCoLC)1235779331 
082 0 4 |a 006.3/2  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Ayyadevara, V,  |e author. 
245 1 0 |a Modern Computer Vision with PyTorch /  |c Ayyadevara, V. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2020. 
300 |a 1 online resource (824 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 49.99 
520 |a Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key Features Implement solutions to 50 real-world computer vision applications using PyTorch Understand the theory and working mechanisms of neural network architectures and their implementation Discover best practices using a custom library created especially for this book Book Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learn Train a NN from scratch with NumPy and PyTorch Implement 2D and 3D multi-object detection and segmentation Generate digits and DeepFakes with autoencoders and advanced GANs Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN Combine CV with NLP to perform OCR, image captioning, and object detection Combine CV with reinforcement learning to build agents that play pong and self-drive a car Deploy a deep learning model on the AWS server using FastAPI and Docker Implement over 35 NN architectures and common OpenCV utilities Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed wit... 
542 |f Copyright © 2020 Packt Publishing  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed November 27, 2020). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Reddy, Yeshwanth,  |e author. 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781839213472/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP