Cargando…

Mastering Machine Learning Algorithms - Second Edition /

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key Features Updated to include new algorithms and techniques Code updated to Python 3.8 & TensorFlow 2.x New coverage of regression...

Descripción completa

Detalles Bibliográficos
Autor principal: Bonaccorso, Giuseppe (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2020.
Edición:2nd edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_on1235778391
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 140220s2020 xx go 000 0 eng d
040 |a TOH  |b eng  |c TOH  |d OCLCO 
020 |a 1838820299 
020 |a 9781838820299 
035 |a (OCoLC)1235778391 
049 |a UAMI 
100 1 |a Bonaccorso, Giuseppe,  |e author. 
245 1 0 |a Mastering Machine Learning Algorithms - Second Edition /  |c Bonaccorso, Giuseppe. 
250 |a 2nd edition. 
264 1 |b Packt Publishing,  |c 2020. 
300 |a 1 online resource (798 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 44.99 
520 |a Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key Features Updated to include new algorithms and techniques Code updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications Book Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem - including NumPy and Keras - to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learn Understand the characteristics of a machine learning algorithm Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains Learn how regression works in time-series analysis and risk prediction Create, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work - train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANs Who this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required. 
542 |f Copyright © 2020 Packt Publishing  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed January 31, 2020). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838820299/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP