Cargando…

Practical Machine Learning with R /

Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a mac...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeyaraman, Brindha (Autor), Olsen, Ludvig (Autor), Wambugu, Monicah (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Packt Publishing, 2019.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a machine learning project from problem definition through to the final model Book Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you'll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you'll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learn Define a problem that can be solved by training a machine learning model Obtain, verify and clean data before transforming it into the correct format for use Perform exploratory analysis and extract features from data Build models for neural net, linear and non-linear regression, classification, and clustering Evaluate the performance of a model with the right metrics Implement a classification problem using the neural net package Employ a decision tree using the random forest library Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learni...
Descripción Física:1 online resource (416 pages)
ISBN:1838550135
9781838550134