Cargando…

Learning Path : Get Started with Natural Language Processing Using Python, Spark, and Scala /

Whether you're a programmer with little to no knowledge of Python, or an experienced data scientist or engineer, this Learning Path will walk you through natural language processing, using both Python and Scala, and show you how to implement a range of popular tools including Spark, scikit-lear...

Descripción completa

Detalles Bibliográficos
Autores Corporativos: O'Reilly (Firm) (Autor), Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2017.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1235774687
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cn|||||||||
007 vz czazuu
008 210201s2017 xx --- o vleng d
040 |a TOH  |b eng  |c TOH  |d NZCPL  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1232111129  |a 1305869898 
020 |a 9781491985854 
020 |a 1491985852 
020 |z 9781491985847 
024 8 |a 9781491985854 
035 |a (OCoLC)1235774687  |z (OCoLC)1232111129  |z (OCoLC)1305869898 
049 |a UAMI 
110 2 |a O'Reilly (Firm),  |e author. 
245 1 0 |a Learning Path :  |b Get Started with Natural Language Processing Using Python, Spark, and Scala /  |c O'Reilly Media, Inc. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2017. 
300 |a 1 online resource (1 video file, approximately 5 hr., 47 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
365 |b 139.97 
520 |a Whether you're a programmer with little to no knowledge of Python, or an experienced data scientist or engineer, this Learning Path will walk you through natural language processing, using both Python and Scala, and show you how to implement a range of popular tools including Spark, scikit-learn, SpaCy, NLTK, and gensim for text mining. You'll learn the most common techniques for processing text, how to use machine learning to generate annotators and apply them within a data pipeline, and the differences between NLP pipelines and other approaches to semantic text mining. You'll learn about standard UIMA annotators, custom annotators, and machine-learned annotators, and understand how architectures for text processing pipelines can incorporate some of the most popular big data tools such as Kafka, Spark, SparkSQL, Cassandra, and ElasticSearch. By the end of the learning path, you will be able to build a natural language processing and entity extraction pipeline, and will have a complete understanding of the capabilities and limitations of natural language text processing. Materials or downloads needed in advance: Example files. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title screen (viewed March 31, 2017). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
710 2 |a O'Reilly for Higher Education (Firm),  |e distributor. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781491985854/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP