Cargando…

TensorFlow Lite for Mobile Development : Deploy Machine Learning Models on Embedded and Mobile Devices /

Deploy machine learning models more easily and efficiently on embedded and mobile devices using TensorFlow Lite (TFLite). TFLite is an open source deep learning framework developed by Google. Look under the hood at the system architecture to see how and when to use each component of TFLite. In the f...

Descripción completa

Detalles Bibliográficos
Autor principal: Zaman, Faisal
Autor Corporativo: Safari, an O Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Apress, 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1232115620
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cn|||||||||
007 vz czazuu
008 181120s2020 xx 042 o vleng d
040 |a NZCPL  |b eng  |c NZCPL  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d LUN  |d TOH  |d STF  |d OCLCO 
019 |a 1233048467 
020 |z 9781484266663 
020 |a 1484266668 
020 |a 9781484266663 
024 8 |a 9781484266663 
029 1 |a AU@  |b 000068857936 
035 |a (OCoLC)1232115620  |z (OCoLC)1233048467 
036 |b CCLOReilly 
049 |a UAMI 
100 1 |a Zaman, Faisal, 
245 1 0 |a TensorFlow Lite for Mobile Development :  |b Deploy Machine Learning Models on Embedded and Mobile Devices /  |c Zaman, Faisal. 
250 |a 1st edition. 
264 1 |b Apress,  |c 2020. 
300 |a 1 online resource (1 streaming video file, approximately 42 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
500 |a Not recommended for use of the libraries' public computers. 
520 |a Deploy machine learning models more easily and efficiently on embedded and mobile devices using TensorFlow Lite (TFLite). TFLite is an open source deep learning framework developed by Google. Look under the hood at the system architecture to see how and when to use each component of TFLite. In the first section, you will learn what makes TFLite different from standard TensorFlow and other products like TFMobile. In the next section, you will learn about the pre-trained model that is available in TFLite, and how to use that pre-trained model to build your own. You will also learn how to convert a TensorFlow model into the TFLite format and train it. After that, you will cover the concept of transfer learning and how you can apply transfer learning to train a pre-trained model to perform some custom tasks in TFLite. Having trained the model, you'll use the TFLite interpreter to run a machine learning model on mobile platforms. As part of this you will review a simple Android app, which will help you to start using TFLite on mobile devices. Running machine learning models on mobile devices is really exciting but it also comes with challenges so, you will need to optimize your model to reduce your app's size. Finally, you will learn how to run TFLite on embedded devices such as Raspberry Pi. Overall this video will help anyone who wants to start learning TFLite and train their own machine learning models using TFLite. After watching this video, you can apply your newly learned TFLite skills to your own projects. What You Will Learn Run any machine learning model on mobile devices Experiment with machine learning projects on the Raspberry Pi Create a machine learning-based mobile app Who This Video Is For Data scientists, software engineers, and students working in these fields will find useful information on working with machine learning models in their current mobile development environments. 
550 |a Made available through: Safari, an O Reilly Media Company. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Streaming video. 
650 0 |a Internet videos. 
650 6 |a Vidéo en continu. 
650 6 |a Vidéos sur Internet. 
650 7 |a streaming video.  |2 aat 
650 7 |a Internet videos  |2 fast 
650 7 |a Streaming video  |2 fast 
655 4 |a Electronic videos. 
710 2 |a Safari, an O Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781484266663/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP