Cargando…

Probabilistic deep learning : with Python, Keras, and TensorFlow Probability /

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy...

Descripción completa

Detalles Bibliográficos
Autores principales: Dürr, Oliver (College teacher) (Autor), Sick, Beate (Autor), Murina, Elvis (Autor)
Formato: eBook
Idioma:Inglés
Publicado: Shelter Island, New York : Manning Publications, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1228532447
003 OCoLC
005 20231017213018.0
006 m d
007 cr |n|||||||||
008 201211s2020 nyu o 000 0 eng d
040 |a VT2  |b eng  |c VT2  |d TOH  |d UKOBU  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781638350408  |q (electronic book) 
020 |a 163835040X  |q (electronic book) 
020 |a 1617296074  |q (paperback) 
020 |z 9781617296079  |q (paperback) 
020 |a 9781617296079  |q (paperback) 
029 1 |a AU@  |b 000068857460 
029 1 |a AU@  |b 000073555047 
035 |a (OCoLC)1228532447 
082 0 4 |a 006.31  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Dürr, Oliver  |c (College teacher),  |e author. 
245 1 0 |a Probabilistic deep learning :  |b with Python, Keras, and TensorFlow Probability /  |c Oliver Dürr, Beate Sick ; with Elvis Murina. 
264 1 |a Shelter Island, New York :  |b Manning Publications,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource 
500 |a "Exercises in Jupyter Notebooks"--Cover 
505 0 |a Part 1, Basics of deep learning. Introduction to probabilistic deep learning ; Neural network architectures ; Principles of curve fitting -- Part 2, Maximum likelihood approaches for probabilistic DL models. Building loss functions with the likelihood approach ; Probabilistic deep learning models with TensorFlow Probability ; Probabilistic deep learning models in the wild -- Part 3, Bayesian approaches for probabilistic DL models. Bayesian learning ; Bayesian neural networks. 
520 |a Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
700 1 |a Sick, Beate,  |e author. 
700 1 |a Murina, Elvis,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617296079/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP