Cargando…

Deep reinforcement learning in Unity : with Unity ML toolkit /

Gain an in-depth overview of reinforcement learning for autonomous agents in game development with Unity. This book starts with an introduction to state-based reinforcement learning algorithms involving Markov models, Bellman equations, and writing custom C# code with the aim of contrasting value an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Majumder, Abhilash (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkeley] : Apress, [2021]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1228457044
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 201230s2021 cau o 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d EBLCP  |d VT2  |d DCT  |d GW5XE  |d ERF  |d LDP  |d TOH  |d OCLCO  |d OCLCF  |d OCL  |d OCLCQ  |d OCLCO  |d COM  |d N$T  |d OCLCQ  |d OCL  |d OCLCO 
019 |a 1232282410  |a 1235826175  |a 1238202428  |a 1238205434  |a 1238205898  |a 1240162866  |a 1240530996 
020 |a 9781484265031  |q (electronic bk.) 
020 |a 1484265033  |q (electronic bk.) 
020 |z 9781484265024 
020 |z 1484265025 
020 |z 9781484265048  |q (print) 
020 |z 1484265041 
024 7 |a 10.1007/978-1-4842-6503-1  |2 doi 
024 8 |a 9781484265024 
024 8 |a 9781484265031 
029 1 |a AU@  |b 000068472373 
029 1 |a AU@  |b 000070278905 
035 |a (OCoLC)1228457044  |z (OCoLC)1232282410  |z (OCoLC)1235826175  |z (OCoLC)1238202428  |z (OCoLC)1238205434  |z (OCoLC)1238205898  |z (OCoLC)1240162866  |z (OCoLC)1240530996 
037 |b Springer 
050 4 |a QA76.76.C672 
072 7 |a UMK  |2 bicssc 
072 7 |a COM012040  |2 bisacsh 
072 7 |a UMK  |2 thema 
082 0 4 |a 794.8/151  |2 23 
049 |a UAMI 
100 1 |a Majumder, Abhilash,  |e author. 
245 1 0 |a Deep reinforcement learning in Unity :  |b with Unity ML toolkit /  |c Abhilash Majumder. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
500 |a Includes index. 
505 0 |a Chapter 1: Introduction to Reinforcement Learning -- Chapter 2: Path Finding and Navigation -- Chapter 3: Setting Up ML Agents Toolkit -- Chapter 4: Understanding Brain Agents and Academy -- Chapter 5: Deep Reinforcement Learning -- Chapter 6: Competitive Networks for AI Agents -- Chapter 7: Case Studies in ML Agents. 
520 |a Gain an in-depth overview of reinforcement learning for autonomous agents in game development with Unity. This book starts with an introduction to state-based reinforcement learning algorithms involving Markov models, Bellman equations, and writing custom C# code with the aim of contrasting value and policy-based functions in reinforcement learning. Then, you will move on to path finding and navigation meshes in Unity, setting up the ML Agents Toolkit (including how to install and set up ML agents from the GitHub repository), and installing fundamental machine learning libraries and frameworks (such as Tensorflow). You will learn about: deep learning and work through an introduction to Tensorflow for writing neural networks (including perceptron, convolution, and LSTM networks), Q learning with Unity ML agents, and porting trained neural network models in Unity through the Python-C# API. You will also explore the OpenAI Gym Environment used throughout the book. Deep Reinforcement Learning in Unity provides a walk-through of the core fundamentals of deep reinforcement learning algorithms, especially variants of the value estimation, advantage, and policy gradient algorithms (including the differences between on and off policy algorithms in reinforcement learning). These core algorithms include actor critic, proximal policy, and deep deterministic policy gradients and its variants. And you will be able to write custom neural networks using the Tensorflow and Keras frameworks. Deep learning in games makes the agents learn how they can perform better and collect their rewards in adverse environments without user interference. The book provides a thorough overview of integrating ML Agents with Unity for deep reinforcement learning. You will: Understand how deep reinforcement learning works in games Grasp the fundamentals of deep reinforcement learning Integrate these fundamentals with the Unity ML Toolkit SDK Gain insights into practical neural networks for training Agent Brain in the context of Unity ML Agents Create different models and perform hyper-parameter tuning Understand the Brain-Academy architecture in Unity ML Agents Understand the Python-C# API interface during real-time training of neural networks Grasp the fundamentals of generic neural networks and their variants using Tensorflow Create simulations and visualize agents playing games in Unity. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 3, 2021). 
542 |f Copyright © Apress  |g 2021 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Unity (Electronic resource) 
630 0 7 |a Unity (Electronic resource)  |2 fast 
650 0 |a Video games  |x Programming. 
650 0 |a Intelligent agents (Computer software) 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Jeux vidéo  |x Programmation. 
650 6 |a Agents intelligents (Logiciels) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Intelligent agents (Computer software)  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Video games  |x Programming  |2 fast 
776 0 8 |i Print version:  |a Majumder, Abhilash.  |t Deep reinforcement learning in Unity.  |d [Berkeley] : Apress, [2021]  |z 1484265025  |z 9781484265024  |w (OCoLC)1193111503 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484265031/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6447677 
938 |a YBP Library Services  |b YANK  |n 301832770 
938 |a EBSCOhost  |b EBSC  |n 2716762 
994 |a 92  |b IZTAP